
Fundamental groups
1. Motivation
1.1. Brouwer’s fixed point theorem
We cannot perfectly mix coffee!

Let 𝔻2 be the unit disk {𝑥 ∈ ℝ2 | ‖𝑥‖ ≤ 1}.

Theorem 1.1.1 (Brouwer) :  For every continuous map 𝑓 : 𝔻2 → 𝔻2, there exists 𝑥 ∈ 𝔻2 such
that 𝑓(𝑥) = 𝑥.

A natural attempt at the proof would be by contradiction. Suppose there is such a map 𝑓 . Since 𝑥
and 𝑓(𝑥) are distinct, we can draw a half line from 𝑥 to 𝑓(𝑥). Denote by 𝑟(𝑥) the point where it
intersects the circle 𝕊1 (the boundary of 𝔻2). Since 𝑓  is a continuous map, it is an easy exercise that
the map 𝑥 ↦ 𝑟(𝑥) is continuous as well. Moreover, it is an identity for all points on the boundary
𝕊1.
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We have the inclusion 𝑖 : 𝕊1 ↪ 𝔻2 of the boundary to the circle. So overall we have two maps

𝕊1 ↪
𝑖
𝔻2 →

𝑟
𝕊1

whose composition is the identity on 𝕊1.

The argument could now proceed by saying such a map 𝑟 can never be continuous, since it must
somehow involve creating a “hole” in the middle of the disk. To make this argument formal, it is
convenient to first develop a general theory of continuous maps. This theory is called topology.

Specifically, we will study a way to detect “holes.” To each suitable geometric object 𝑆 (like a disk or
a sphere), we will assign a group 𝜋1(𝑆) called the fundamental group of 𝑆. It will consist of loops
which cannot be contracted in 𝑆 to a point, suggesting a presence of some obstruction - a “hole”.
This will allow us to transform the statements about continuous maps between spaces to statements
about functions between groups, which are often more tractable.

1.2. Topology

Definition 1.2.1 :  In this lecture, a space will be a subset of ℝ𝑛 for some 𝑛 ∈ ℕ.

A map 𝑓 : 𝑆 → 𝑇  between spaces 𝑆 ⊂ ℝ𝑛 and 𝑇 ⊂ ℝ𝑚 is called continuous if for every 𝜀 > 0,
there is 𝛿 > 0 such that for all 𝑥, 𝑦 ∈ 𝑆 with ‖𝑥 − 𝑦‖ < 𝛿, it holds that ‖𝑓(𝑥) − 𝑓(𝑦)‖ < 𝜀.
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Intuitively, the definition of continuity means that 𝑓  maps sufficiently close points to sufficiently
close points.

1.3. Aside: topological spaces formally
For the present series, understanding the notions of this section is not substantial and it suffices to
consider spaces as subsets of ℝ𝑛. It is only put here for interested readers.

You may have already seen a more general definition of a metric space. Inside of it, you have a
metric funcion, which computes a distance between points.

Definition 1.3.1 :  A metric space is a set 𝑀  and a function 𝑑 : 𝑀 ×𝑀 → ℝ≥0 to non-
negative real numbers called a metric, satisfying for all 𝑥, 𝑦, 𝑧 ∈ 𝑀
• 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦
• 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) (symmetry)
• 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) ≥ 𝑑(𝑥, 𝑧) (triangle inequality)

It is not hard to see that ℝ𝑛 and all of its subsets, along with the classic Euclidean distance, are
metric spaces.

We can, however, consider even a much more general concept of a topological space. There, the
notion of the distance is lost and we retain only the information about which sets are the
neighbourhoods of which points. The advatage for our purposes is that it is often convenient to
consider quotients of spaces, i.e. spaces factored by some equivalence. Those no longer have a
natural metric, but still have a natural induced topological structure.

Definition 1.3.2 :  A topological space is a set 𝑆, along with for each 𝑥 ∈ 𝑆 a system 𝒩(𝑆) of
subsets of 𝑆 called neighbourhoods of 𝑥, which satisfy:
• 𝑥 ∈ 𝑁  for every 𝑁 ∈ 𝒩(𝑥)
• if 𝑀 ⊇ 𝑁 ∈ 𝒩(𝑥), then 𝑀 ∈ 𝒩(𝑥) (superset of a neighbourhood is a neighbourhood)
• for 𝑀,𝑁 ∈ 𝒩(𝑥), also 𝑀 ∩𝑁 ∈ 𝒩(𝑥) (intersection of neighbourhoods is a neigbourhood)

A subset 𝑂 ⊂ 𝑆 of a topological space 𝑆 is called open if for every 𝑥 ∈ 𝑆, there exists a
neighbourhood 𝑁  of 𝑥 such that 𝑁 ⊂ 𝑂.

• for every 𝑁 ∈ 𝒩(𝑥), there is 𝑁 ⊇ 𝑀 ∈ 𝒩(𝑥) with 𝑀  open

Every metric space is a topological space.

Definition 1.3.3 :  For a metric space 𝑀  and a point 𝑥 ∈ 𝑀 , an open ball (of radius 𝑟) around
𝑥 is the set 𝐵(𝑥, 𝑟) = {𝑦 ∈ 𝑀 | 𝑑(𝑥, 𝑦) < 𝑟}.

A set 𝑂 ⊂ 𝑀  is a neighbourhood of 𝑥 if it contains an open ball around 𝑥 𝐵(𝑥, 𝑟) for some
𝑟 ∈ ℝ>0.

Then equivalently, an open set of a metric space is a set containing some open ball around each of
its points.

Exercise :  Show that the definition of the topological space we have given is equivalent to the
following one, more often found in the literature, in terms of open sets: A topological space is
a set 𝑇 , along with a set 𝜏  of subsets of 𝑇  called open sets, such that
• ∅, 𝑇  are open
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• a union of any collection of open sets is open
• an intersection of any finite collection of open sets is open

(Hint: define neighbourhoods of 𝑋 as the sets containing an open set containing 𝑋.)

Definition 1.3.4 :  A map 𝑓 : 𝑆 → 𝑇  between topological spaces is continuous if for every 𝑥 ∈
𝑆 and 𝑁 ∈ 𝒩(𝑓(𝑥)), it holds that 𝑓−1(𝑁) ∈ 𝒩(𝑥).

Exercise :  Show that the definition is equivalent to the following: for every 𝑂 ⊂ 𝑇  open, the
preimage 𝑓−1(𝑂) is open. Moreover, show that for a metric space, this definition is equivalent
to the definition of a continuous map there.

1.4. Dirac belt trick
Feel free to try the following trick a home. Firmly fix the end of the belt opposite the buckle, so that
it cannot move. Now twist the buckle 360 degrees around the axis of the belt while keeping it
pointed in the same direction. In this state, the belt is twisted and no movement of the buckle which
keeps it horizontal and pointing in the same direction can undo the twist.

Obviously, a rotation of the buckle by 360 degrees in the opposite direction would undo the twist.
What is surprising is that after rotating the buckle by 360 degrees in the same direction as before,
making the belt “doubly twisted”, the twist can be undone by simply moving the buckle while
keeping its orientation fixed.

To understand what’s going on, consider the curve in the middle of the belt that goes from the
opposite end to the buckle. In each point, we can draw a frame of 3 unit vectors - one in the
direction of the curve, one normal to the belt and one orthogonal to the previous 2. So the state of
the belt can be represented by the path in the space of triples of orthogonal vectors in ℝ3. If we
write these vectors in a matrix, they form precisely the rotation matrices, or the special orthogonal
group SO(3).

Definition 1.4.1 :  A real 3 × 3 matrix 𝐴 is in SO(3) if 𝐴𝑇𝐴 is the identity matrix
(equivalently, 𝐴 has orthonormal columns) and its determinant is 1.

Although SO(3) is a subset of ℝ9, its elements can actually be described by just 3 parameters
(exercise), so it makes sense to think of it as of a 3-dimensional subspace.

Now, the belt represents a path 𝜑 : [0, 1] → SO(3). Having the buckle and the other end fixed
amounts to fixing the values of 𝜑(0) and 𝜑(1), say to the identity matrix. Moving the belt while
keeping the ends fixed corresponds to deforming these paths. The Dirac belt trick suggests that
some paths can be deformed to the constant paths at the identity (𝜑(𝑡) = Id ∀𝑡 ∈ [0, 1]) which is the
straight belt, while others can’t.

To describe it formally, we first have to define deformation of maps.

2. Groups
Here we just recall the basic definition of group theory.
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Definition 2.1 :  A group is a set 𝐺, along with a binary operation ⋅ : 𝐺 × 𝐺 → 𝐺 called the
product, a unary operation (−)−1 : 𝐺 → 𝐺 called the inverse and a constant 𝑒 ∈ 𝐺 called the
unit element, satisfying for each 𝑓, 𝑔, ℎ ∈ 𝐺 the following axioms:
• (𝑥 ⋅ 𝑦) ⋅ 𝑧 = 𝑥 ⋅ (𝑦 ⋅ 𝑧) (associativity)
• 𝑒 ⋅ 𝑔 = 𝑔 = 𝑔 ⋅ 𝑒 (𝑒 is the unit element)
• 𝑔 ⋅ 𝑔−1 = 𝑒 = 𝑔−1 (𝑔1 is the inverse to 𝑔)

Exercise :  Show that for a set 𝑋, the set of bijections 𝑋 → 𝑋 forms a group with the product
given by composition of funcions, inverse an inverse bijection and the identity bijection as the
identity forms a group.

Originally, the term group was used on a subset of bijections of a set 𝑋 closed under compositions
and inverses. Later, it became apparent that the abstract axiomatic definition is often more
convenient.

Definition 2.2 :  For a group 𝐺 with the product ⋅ and a group 𝐻  with the product ⋆, a
function 𝑓 : 𝐺 → 𝐻  is called a group homomorphism if it preserves products, i.e. for every
𝑥, 𝑦 ∈ 𝐺:

𝑓(𝑥 ⋅ 𝑦) = 𝑓(𝑥) ⋆ 𝑓(𝑦)

A homorphism 𝑓  is called an isomorphism if there is a homomorphism 𝑔 : 𝐻 → 𝐺 such that
𝑓 ∘ 𝑔 = id𝐻  and 𝑔 ∘ 𝑓 = id𝐺.

Isomorphisms are a good notion of “group equivalence” - in particular, the underlying sets are in
bijection which preserves the products.

Exercise :  Show that homomorphisms preserve units and inverses as well.

3. Homotopies

Definition 3.1 :  Let 𝑓, 𝑔 : 𝑆 → 𝑇  be maps between spaces. They are called homotopic if there
is a map 𝐻 : 𝑆 × [0, 1] → 𝑇  such that for all 𝑥 ∈ 𝑆:
• 𝐻(𝑥, 0) = 𝑓(𝑥)
• 𝐻(𝑥, 1) = 𝑔(𝑥)

𝐻  is called homotopy. We will denote by 𝑓 ∼ 𝑔 that 𝑓  and 𝑔 are homotopic.

A map 𝑓 : 𝑆 → 𝑇  is called a homotopy equivalence if there is 𝑔 : 𝑇 → 𝑆 such that both
composites 𝑓𝑔 and 𝑔𝑓  are homotopic to identity.

A space is called contractible if it is equivalent to the single point ∗ (a one element set).

Exercise :  Show that being homotopic is an equivalence relation.

Example :  ℝ𝑛 is contractible. Let 𝑓 : ∗ ↪ ℝ𝑛 be the inclusion of the origin and 𝑔 : ℝ𝑛 → ∗ the
unique map to the point. Then 𝑔𝑓  is the identity and 𝑓𝑔 is homotopic to the identity via the
map 𝐻(𝑥, 𝑡) = 𝑡𝑥.

This example shows that while all homeomorphic spaces are homotopy equivalent, the converse is
not true (there is not even a bijection between ℝ𝑛 and a single point). On the other hand, the
spheres 𝕊𝑛 are not contractible, but it is not completely trivial to prove.
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3.1. Loop spaces

Definition 3.1.1 :  For a space 𝑆 and a point ∗ ∈ 𝑆, let the loop space Ω(𝑆, ∗) be the set
{𝜌 : [0, 1] → 𝑆 | 𝜌(0) = 𝜌(1) = ∗} of loops in 𝑆 which begin and end in ∗.

For 𝜌, 𝜏 ∈ Ω(𝑆, ∗), define their product 𝜌𝜏 : [0, 1] → 𝑆 by:

𝜌𝜏(𝑡) = {
𝜌(2𝑡) for 𝑡 ∈ [0, 12]
𝜏(2(𝑡 − 1

2)) for 𝑡 ∈ [
1
2 , 1]

We just go around the first loop and then around the second one.

This product almost gives the set Ω(𝑆, ∗) the structure of a group - the group axioms in Ω(𝑆, ∗)
hold up to homotopy. Explicitly, for every 𝜌, 𝜎, 𝜏 ∈ Ω(𝑆, ∗):
• (𝜌𝜎)𝜏 ∼ 𝜌(𝜎𝜏) (associativity)
• 𝑒𝜌 ∼ 𝜌 ∼ 𝜌𝑒 (unit)
• 𝜌𝜌−1 ∼ 𝑒 ∼ 𝜌−1𝜌 (inverses)

where 𝑒(𝑡) = ∗ and 𝜌−1(𝑡) = 𝜌(1 − 𝑡).

For example, the two curves in the associativity relation (the two ways to bracket the product of
three curves) have the same image, but different parametrisation. The homotopy 𝐻 : [0, 1] ×
[0, 1] → 𝑆 between them is given by linearly interpolating between the two parametrizations. For
the sake of explicitness, this is:

𝐻(𝑠, 𝑡) =

{{
{{
{{
{𝜌((4 − 2𝑠)𝑡) for 𝑡 ∈ [0, 1

4−2𝑠]
𝜎(4𝑡 − (1 + 𝑠)) for 𝑡 ∈ [ 1

4−2𝑠 ,
1
4 +

1
4−2𝑠]

𝜏((1 + 𝑠)(2𝑡 − 4−𝑠
4−2𝑠)) for 𝑡 ∈ [

1
4 +

1
4−2𝑠 , 1]

Exercise :  Construct the homotopies witnessing the unit and inverse axiom.

3.2. Fundamental groups
To get a proper group, we factor the loop space by the equivalence relation of being homotopic.

Definition 3.2.1 :  For a space 𝑆 and ∗ ∈ 𝑆, let the fundamental group 𝜋1(𝑆, ∗) be the set
Ω(𝑆, ∗)/ ∼, along with the induced group structure. Its elements are the equivalence classes of
paths starting and ending at ∗.

For 𝜑 in Ω(𝑆, ∗), we will denote its equivalence class in 𝜋1(𝑆, ∗) by [𝜑].

To avoid having to pick the base point ∗ ∈ 𝑆, we can without loosing much generality restrict
ourselves to the spaces with a single connected component and show that the group does not
depend on the choice of the base point there.

Definition 3.2.2 :  A space 𝑆 is called path connected if for all pairs of points 𝑥, 𝑦 ∈ 𝑆, there
exists a path 𝜑 : [0, 1] → 𝑆 connecting them, i.e 𝜑(0) = 𝑥 and 𝜑(1) = 1.
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Proposition 3.2.1 :  For a path connected space 𝑆 and two points 𝑥, 𝑦 ∈ 𝑆, the groups
𝜋1(𝑆, 𝑥) and 𝜋1(𝑆, 𝑦) are isomorphic.

Proof :  Pick a path 𝜑 connecting 𝑥 and 𝑦. Construct a pair of maps

Ω(𝑆, 𝑥) → Ω(𝑆, 𝑦), 𝜓 ↦ 𝜑𝜓𝜑−1

Ω(𝑆, 𝑦) → Ω(𝑆, 𝑥), 𝜏 ↦ 𝜑−1𝜏𝜑

where 𝜑−1(𝑡) = 𝜑(1 − 𝑡) and the composition 𝜑𝜓𝜑1(𝑡) is defined by

𝜑𝜓𝜑−1(𝑡) =

{{
{{
{{
{𝜑(3𝑡) for 𝑡 ∈ [0, 13]
𝜓(3(𝑡 − 1

3)) for 𝑡 ∈ [
1
3 ,
2
3]

𝜓(3(𝑡 − 2
3)) for 𝑡 ∈ [

2
3 , 1]

These maps map homotopic paths to homotopic paths and preserve the composition of paths
in the loop spaces up to homotopy. Moreover, they are inverse up to homotopy. So they
descend to mutually inverse group homomorphisms between 𝜋1(𝑆, 𝑥) and 𝜋1(𝑆, 𝑦), i.e.
isomorphisms. □

Definition 3.2.3 :  For a path connected space 𝑆, 𝜋1(𝑆) will denote the fundamental group of
𝑆 with respect to any choice of the base point in 𝑆.

Definition 3.2.4 :  A map between spaces 𝑓 : 𝑆 → 𝑇  induces a homomorphism of groups
𝜋1(𝑓) : 𝜋1(𝑆, ∗) → 𝜋1(𝑇 , 𝑓(∗)) by mapping [𝜑] for 𝜑 : [0, 1] → 𝑆 to [𝑓 ∘ 𝜑].

Remark :  A homotopy 𝐻 : [0, 1] × [0, 1] → 𝑆 is mapped to the homotopy 𝑓 ∘ 𝐻  in 𝑇 , so this
map is well defined (does not depend on the choince of representative for the equivalence class
of 𝜑). It is a homomorphism since a map of a composition of paths 𝑓 ∘ (𝜑𝜓) is the same curve
as (𝑓 ∘ 𝜑)(𝑓 ∘ 𝜓).

It is also easy to see that 𝜋1(𝑔 ∘ 𝑓) = 𝜋1(𝑔) ∘ 𝜋1(𝑓). In the language of the category theory, this
means that 𝜋1 is a functor.

Proposition 3.2.2 : For homotopy equivalent path-connected spaces 𝑆 and 𝑇 , their
fundamental groups 𝜋1(𝑆) and 𝜋1(𝑇 ) are isomorphic.

Proof :  Pick maps 𝑓 : 𝑆 → 𝑇  and 𝑔 : 𝑇 → 𝑆 witnessing the homotopy equivalence, i.e. there is
a homotopy 𝐻  between 𝑓𝑔 and id𝑆 , also there is a homotopy 𝐺 between 𝑔𝑓  and id𝑇 . A loop
𝜑 : [0, 1] → 𝑆 is mapped to a loop 𝑓 ∘ 𝜑 in 𝑇  and a loop 𝜓 : [0, 1] → 𝑇  is mapped to a loop 𝑔 ∘
𝜓 in 𝑆. The loop 𝑔 ∘ 𝑓 ∘ 𝜑 is homotopic to 𝜑 via the homotopy 𝐻 ; analogously in the other
direction. These maps obviously preserve the composition of loops, yielding the sought group
isomorphisms. □

The fundamental group of a single point is a trivial group (with only one element - the identity)
since there is only one map from any set to a one elemnt set. Thanks to the previous proposition, the
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fundamental group of any contractible space, i.e space homotopy equivalent to a point (such as ℝ𝑛 or
𝔻𝑛) is trivial as well.

Proposition 3.2.3 :  The fundamental group 𝜋1(𝕊𝑛) of the sphere 𝕊𝑛 for 𝑛 ≥ 2 is trivial.

Proof :  If a loop 𝜑 : [0, 1] → 𝕊𝑛 misses a point 𝑥 ∈ 𝕊𝑛, stereographically project it from 𝑥 to
ℝ𝑛, contract it there to the trivial loop, and stereographically project the homotopy back to 𝕊𝑛.

There actually exist loops whose image is the whole 𝕊𝑛. For them, we need more work. □

3.3. Coverings
To compute the fundamental group in the spaces where it is non-trivial, one needs to develop more
theory. One approach is to construct a bigger space, which “covers” the original space and with that
keeps track of the loops inside it.

Definition 3.3.1 :  A map 𝑝 : 𝐸 → 𝐵 is called a covering if for every 𝑏 ∈ 𝐵, there is a
neighbourhood 𝑏 ∈ 𝑈 ⊆ 𝐵 such that 𝑝−1(𝐵) is homeomorphic to a disjoint union of a copies
of 𝑈 .

For a point 𝑏 ∈ 𝐵, the preimage 𝑝−1(𝑏) is called a fiber of 𝑏.

A covering is called universal if 𝐸 is path-connected and 𝜋1(𝐸) is trivial.

Example :  A (universal) covering ℝ1 → 𝕊1 given by 𝑡 ↦ (cos 𝑡, sin 𝑡). This covering can be
imagined as an infinite spiral staircase above a circle. Furthermore, one can imagine two
people one on the staircase and one below, always moving in a way that they remain one
above the other.

Proposition 3.3.1 (Unique path lifting) :  For a covering 𝐸 → 𝐵 along with:
• 𝑏 ∈ 𝐵
• a path 𝜑 in 𝐵 with 𝜑(0) = 𝑏
• 𝑒 ∈ 𝐸 with 𝑝(𝑒) = 𝑏,

there is a unique path 𝜑̃ in 𝐸 with 𝜑̃(0) = 𝑒 and 𝑝 ∘ 𝜑̃ = 𝜑.

Proof :  By the definition of a covering, for every 𝑡 ∈ [0, 1], the point 𝜑(𝑡) has a neighbourhood
𝑈𝑡 whose 𝑝-preimage is homeomorphic to a disjoint union of copies of 𝑈𝑡. The sets 𝜑−1(𝑈𝑡)
cover the unit interval and by the Heine-Borel theorem (TODO), it is covered by a finite
number of them for some 𝑡0,…, 𝑡𝑛.

First compose 𝜑 the neighbourhood of 0 with the homeomorphism mapping 𝑈0 to the
connected component of 𝑝−1(𝑈0) containing the point 𝑒. From there, extend the curve in the
finite number of steps using the neigbourhoods 𝑈𝑡0 ,…, 𝑈𝑡𝑛 . □
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Proposition 3.3.2 (Unique homotopy lifting) :  For a covering 𝐸 → 𝐵 along with:
• 𝑏 ∈ 𝐵
• paths 𝜑,𝜓 in 𝐵 with 𝜑(0) = 𝜓(0) = 𝑏
• a homotopy 𝐻  between 𝜑 and 𝜓 constant on the point 𝑏
• 𝑒 ∈ 𝐸 with 𝑝(𝑒) = 𝑏,

there is a unique homotopy 𝐻̃  between 𝜑̃ and 𝜓 constant on endpoints such that 𝑝 ∘ 𝐻̃ = 𝐻 .

Proof :  The proof is completely analogous to the previous one, using the fact that every cover
by open sets of the square [0, 1] × [0, 1] admits a finite subcover. □

In particular, the universal covering sees the group 𝜋1(𝐵) geometrically. We will now exhibit it as
certain symmetries of the universal covering.

Definition 3.3.2 :  For a covering 𝑝 : 𝐸 → 𝐵, a map 𝑓 : 𝐸 → 𝐸 is called a deck transformation
if it preserves the covering, meaning 𝑝 ∘ 𝑓 = 𝑝. All deck tranformations of a covering form a
group, which will be denoted 𝐺(𝐸).

Proposition 3.3.3 :  For a universal covering 𝑝 : 𝐸 → 𝐵 and 𝑏 ∈ 𝐵, the deck transformations
𝐺(𝐸) correspond to points of the fiber 𝑝−1(𝑏) (by where they send a single point 𝑒 ∈ 𝑝−1(𝑏).

Proof :  Suppose the deck transformation maps 𝑒 to the point 𝑒′. For a point 𝑥 ∈ 𝐵, pick a path
𝜑 connecting 𝑒 and 𝑥 and let 𝜑𝑒′  be the unique lift of 𝑝 ∘ 𝜑 starting at 𝑒′. By the uniqueness of
the path lifting, 𝑥 must be mappend to 𝜑𝑒′(1), so the deck transformation is determined by 𝑒′.

On the other hand, since 𝜋1(𝐸) is trivial, all the choices of 𝜑 are homotopic, yielding a
homotopy between the corresponding 𝜑𝑒′s (by lifting of homotopies). In particular, their
endpoints are the same, so the image of every point is uniquely determined.

It remains to show that the constructed map 𝑑 : 𝐸 → 𝐸 is continuous. A sufficiently small
open neighbourhood 𝑉  around 𝑑(𝑥) is homeomorphic to an open neighbourhood of 𝑝(𝑥) =
𝑝(𝑑(𝑥)), whose 𝑝-preimage is an open neighbourhood 𝑑−1(𝑉 ) of 𝑥. □

Finally, given the universal covering, we can compute the fundamental group of the base space.

Theorem 3.3.1 :  For a universal covering 𝑝 : 𝐸 → 𝐵, the group of its deck tranformations
𝐺(𝐸) is isomorphic to 𝜋1(𝐵).

Proof :  Pick a point 𝑏 ∈ 𝐵 and 𝑒 ∈ 𝑝−1(𝑏).

On one hand, assign to [𝜑] ∈ 𝜋1(𝐵) (with 𝜑 a loop based at 𝑏) the unique deck transformation
𝑑𝜑̃(𝑒) mapping 𝑒 to 𝜑̃(𝑒) where 𝜑̃ is the unique lift of 𝑒 starting at 𝑝. By lifting of homotopies,
this does not depend on the choice of representative. If 𝜎 is another loop (based at 𝑏), then
𝑑𝜎𝜌(𝑒) = 𝑑𝜎̃(𝑒) ⋅ 𝑑𝜑̃(𝑒) by the construction from Proposition 3.3.3, so it is a homomorphism.
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On the other hand, for a deck transformation 𝑑 : 𝐸 → 𝐸, pick a path 𝜌𝑑 connecting 𝑒 and
𝑑(𝑒). Since it is a deck transformation, 𝑑(𝑒) ∈ 𝑝−1(𝑏), so we can define the loop

𝜓𝑑 ≔ 𝑝 ∘ 𝜌𝑑

Because 𝜋1(𝐸) is trivial, all paths from 𝑒 to 𝑑(𝑒) are homotopic (otherwise we would have a
nontrivial loop going from 𝑒 to 𝑑(𝑒) and back), so the homotopy class [𝜓𝑑] does not depend on
our choice of 𝜌. If 𝑓  is another deck transformation, then

𝜓𝑓⋅𝑑 = 𝑝 ∘ (𝜌𝑓𝜌𝑑) = (𝑝 ∘ 𝜌𝑓)(𝑝 ∘ 𝜌𝑑) = 𝜓𝑓𝜓𝑑

so the assignment 𝑑 ↦ [𝜓𝑑] is really a group homomorphism.

Now, composing the homomorphisms in one direction, we have for a deck transformation 𝑑
(by Proposition 3.3.3)

𝑑𝜓𝑑(𝑒) = 𝑑𝑑(𝑒) = 𝑑

In another direction, for a loop 𝜑 in 𝐵

𝜓𝑑𝜑 = 𝑝 ∘ 𝜌𝑑𝜑̃(𝑒) ∼ 𝑝 ∘ (𝜑̃) = 𝜑

since all paths between points in 𝐸 are homotopic. Thus we have inverse isomorphisms. □
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