Reading seminar on ∞-categories

Remark: In these notes, we will take the liberty of identifying a 1-category D with its nerve (which is an ∞ -category). C will always be an ∞ -category with finite products.

1. Monoids

In an ∞ -category, we would like a monoid to me an object M, along with a product $M \times M \to M$ and a unit $* \to M$ satisfying the associativity and unitality axioms only up to coherences. As before, the machinery to keep track of all the higher coherences is provided by the category Δ .

Definition 1.1: A monoid in C is a functor

$$M: \Delta^{\operatorname{op}} \to C, [n] \mapsto M_n$$

satisfying the *Segal condition*: for every $n \in \mathbb{N}$, the map

$$M_n \to \prod_{i=1}^n M_1$$

induced by n inclusions $[1] \hookrightarrow [n]$ is an isomorphism.

We write $\mathsf{Mon}(C) \subset \mathsf{Fun}(\Delta^{\mathsf{op}}, C)$ for the full subcategory of monoids in C.

Remark: In particular, M_0 is the terminal object and the unique map $s_0:[1]\to[0]$ provides a map

$$e:M_0\to M_1$$

which we will call the *unit* of M. The inclusion $d_1:[1] \simeq \{0 < 2\} \hookrightarrow [2]$ provides a map

$$m: M_1 \times M_1 \simeq M_2 \to M_1$$

which we will call the *multiplication* of M. The simplicial identities take care of the unitality and associativity laws.

Definition 1.2: A monoid $M \in Mon(C)$ is grouplike or a group in C if the shear map

$$(\operatorname{pr}_1, m): M \times M \to M \times M, (x, y) \mapsto (x, xy)$$

is an isomorpism. We write $\mathsf{Grp}(C) \subset \mathsf{Mon}(C)$ for the full subcategory of the groups in C.

Proposition 1.1: The loop space functor $\Omega: C_* \to C_*$ extends into a functor $\tilde{\Omega}: C_* \to \operatorname{\mathsf{Grp}}(C)$. Abusing the notation, we will call it again Ω .

Definition 1.3: When C admits geometric realizations (i.e. Δ^{op} -indexed limits), the classifying space is a functor $B : Mon(C) \to C_*$ given by

$$M\mapsto \operatorname{colim}_{\Delta^{\operatorname{op}}} M$$

Proposition 1.2: B is the left adjoint to Ω , i.e. there is an adjunction

$$\boldsymbol{B}:\mathsf{Mon}(C)\rightleftarrows C_*:\Omega$$

Theorem 1.1 (Recognition principle): For $C = \mathsf{Spc}$, the preceding adjunction restricts to an equivalence

$$oldsymbol{B}:\mathsf{Grp}(\mathsf{Spc})\overset{\simeq}{\rightleftarrows}\mathsf{Spc}^{\geq 1}_*:\Omega$$

between groups in spaces and connected pointed spaces.

Definition 1.4: For $n \in \mathbb{N}$, the E_n -monoid in C is defined inductively:

- $\mathsf{Mon}_{E_0}(C) \coloneqq C_*$
- $\mathsf{Mon}_{E_n}^{\mathsf{o}}(C) \coloneqq \mathsf{Mon}(\mathsf{Mon}_{E_{n-1}}(C) \text{ for } n > 0$

Analogously for E_n -groups.

Remark: If the monoid laws hold strictly (i.e. when C is a 1-category), by the classical Eckmann-Hilton argument, E_2 -monoids are already commutative monoids.

Proposition 1.3: For all $n \in \mathbb{N}$, there is an adjunction

$$\boldsymbol{B}^n:\mathsf{Mon}_{E_n}(\mathsf{Spc})\rightleftarrows\mathsf{Spc}_*:\Omega^n$$

which restricts to an equivalence

$$B^n: \mathsf{Grp}_{E_n}(\mathsf{Spc}) \stackrel{\cong}{\rightleftarrows} \mathsf{Spc}^{\geq n}_*: \Omega^n$$

between E_n -groups in spaces and (n-1)-connected spaces (with trivial π_i for i < n).

2. Commutative monoids

To define the notion of monoids commuting up to higher coherences, we need to "add more" structure to the category Δ taking care of the symmetries.

Definition 2.1: Len Fin_* be the (skeletal) 1-category of finite pointed sets. Abusing the notation, we will call its elements again [n] for $n \in \mathbb{N}$.

Remark: Alternatively, Fin_* can be considered as a category of finite sets and partially defined maps, with the base point * acting as a "trash bin" where every element whose image is not defined is mapped.

There is an inclusion $\Delta \hookrightarrow \mathsf{Fin}^\mathsf{op}_*$ taking an order preserving map f to a partial map assigning to every element the maximum of its preimage in f.

2

Definition 2.2: A commutative monoid in C is a functor

$$M: \mathsf{Fin}_* \to C, [n] \mapsto M_n$$

satisfying the *Segal condition*: for every $n \in \mathbb{N}$, the map $M_n \to \prod_{i=1}^n M_1$ induced by n inclusions $[1] \hookrightarrow [n]$ is an isomorphism.

We write $\mathsf{CMon}(C) \subset \mathsf{Fun}(\mathsf{Fin}_*,C)$ for the full subcategory of monoids in C.

Proposition 2.1: There is an adjunction

$${\boldsymbol{B}}^{\infty}:\operatorname{CGrp}\ (\operatorname{Spc})\rightleftarrows\operatorname{Sp}_*:\Omega^{\infty}$$

between the commutative groups in spaces an spectra, which restricts to an equivalence on the full subcategory $\operatorname{Sp}^{\geq 0}$ of *connective* spectra. (A spectrum X is called connective if its n-th space X_n is (n-1)-connected for every n).

3. Monoidal categories

Definition 3.1: A monoidal category is a monoid in Cat_{∞} .

A symmetric monoidal category is a commutative monoid in Cat_{∞} .

Remark: By straightening-unstraightening, a monoidal, resp. symmetric monoidal category is equivalently given by a cocartesian fibration $C^{\otimes} \to \Delta^{\text{op}}$, resp. $C^{\otimes} \to \text{Fin}_*$.