
Reading seminar on ∞-categories
1. Naïve attempts at a definition
You may have noticed that for two ordinary categories, functors between them form another
category (with morphisms given by natural transformations). So in the category of categories Cat,
apart from morphisms (functors), we have some 2-morphisms between morphisms.

This suggests a construction of higher categories by allowing the morphisms between two objects to
have a different structure than a mere set. Such a notion is called enrichment.

Definition 1.1 :  Let ℰ be a category with a (categorical) product × and a terminal object 1ℰ. A
category enriched over ℰ is a collection of objects 𝐶 and an object Hom(𝑎, 𝑏) in ℰ for each
𝑎, 𝑏 ∈ 𝐶 , along with morphisms in ℰ

Hom(𝑎, 𝑏) × Hom(𝑏, 𝑐) → Hom(𝑎, 𝑐)
1ℰ → Hom(𝑎, 𝑎)

for each 𝑎, 𝑏, 𝑐 ∈ 𝐶 , satisfying appropriate associativity and unit axioms.

The definition is very analogous to the definition of a category, with hom sets replaced by objects of
ℰ. For example, a category enriched over Cat has hom categories.

Now, it is natural to make the following inductive definition.

Definition 1.2 :  Cat1 are ordinary categories. Cat𝑛+1 are categories enriched over Cat𝑛.
Cat𝑛 are called strict 𝑛-categories.

Are we done at this point? Unfortunately, this definition doesn’t capture most higher categorical
notions that arise in nature. The problem is that by having (𝑛 + 1)-morphisms, the laws between 𝑛-
morphisms such as associativity and unitality can be expressed not as equalities, but as specific (𝑛 +
1)-morphisms witnessing them. But then, these should have (𝑛 + 2)-morphisms witnessing their
laws, and so on.

Exercise :  Show that given 2-morphisms (𝑎 ∘ 𝑏) ∘ 𝑐 ⇒ 𝑎 ∘ (𝑏 ∘ 𝑐) witnessing the associativity of
composition of 1-morphisms, there are two different ways to map ((𝑎 ∘ 𝑏) ∘ 𝑐) ∘ 𝑑 to 𝑎 ∘ (𝑏 ∘
(𝑐 ∘ 𝑑)). We would like to have a 3-morphism witnessing an equivalence between these.

What we really need is a notion of weak 𝑛-categories, where laws hold only up to a higher
equivalence. For low 𝑛, they have been explicitly defined, but the lists of axioms quickly undergo a
combinatorial explosion.

Already in case 𝑛 = 3, this notion is more general than the one defined above.

Example :  For a topological space 𝑋, let its fundamental 3-groupoid 𝜋≤3𝑋 be a weak 3-
category whose objects are points of 𝑋, morphisms are paths between points, 2-morphisms
are homotopies between paths and 3-morphisms are homotopies between homotopies
(factored up to a higher homotopy, i.e. actually equivalence classes of homotopies).
The fundamental 3-groupoid of a 2-sphere 𝜋≤3𝕊2 is not equivalent to any strict 3-category.

How is it possible to tackle this combinatorial explosion of coherence laws? Alexander Grothendieck
suggested that they should be modeled by objects we already (a little bit) know how to study in
mathematics, namely topological spaces.
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Homotopy hypothesis :  ∞-groupoids (weak ∞-categories with all morphisms invertible)
are equivalent to (homotopy types of) topological spaces.

In constructing various theories of ∞-categories, the homotopy hypothesis was seen as a guiding
principle that a good theory should satisfy.

In these lectures, we will only concern ourselves with the theory of (∞, 1)-categories, i.e. categories
which have all 𝑘-morphisms invertible for 𝑘 > 1. While not being the most general case, on one
hand they suffice for most applications and on the other, they can be used as a basic building block
for the theory of (∞, 𝑛)-categories, with 𝑛 = 2, …, ∞. In light of this, from now on, by
∞-categories we will actually mean (∞, 1)-categories.

Since (∞, 1)-categories have all higher morphisms invertible, the hom objects in them should be
∞-groupoids. The homotopy hypothesis immediately suggests the following definition.

Definition 1.3 :  A topological category is a category enriched over topological spaces.

While this definition provides a sensible notion of (∞, 1)-categories, it is actually not often used in
practice, the reason being similar to before. Most natural constructions yield composition of
morphisms that is associative only up to a homotopy, not “on the nose”, as the definition of an
enriched category demands. It turns out that in this case, it is possible to introduce a straightening
procedure, which turns composition associative up to homotopy into a strictly associative one,
however that comes at the cost of technical complexity. Issues also arise when defining functors
between such categories: it turns out one has to consider all the functors between topologically
enriched categories that are in a certain sense “equivalent” to the source, resp. target.

In practice, other definitions are used. However, all of them can be shown to be equivalent to
topological categories in a precise sense.

We will study the most common one, called quasicategories or weak Kan complexes. As a first step,
we will replace topological spaces with a combinatorially better tractable structure called simplicial
sets, which can nevertheless model the same homotopy theory.

2. Three faces of simplicial sets
2.1. Geometric

Definition 2.1.1 :  A (geometric) 𝑛-simplex is a convex hull of 𝑛 + 1 affinely independent
points in an affine space.

0-simplex 1-simplex 2-simplex 3-simplex

Remark :  For concreteness, the standard 𝑛-simplex is often defined as {(𝑡0, …, 𝑡𝑛) ∈
ℝ𝑛+1 | 𝑡0 + … + 𝑡𝑛 = 1}, i.e. the convex hull of the canonical basis vectors of ℝ𝑛+1.
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A simplicial set can be imagined as a collection of 𝑛-simplices (in a sense the simplest 𝑛-dimensional
objects) for various 𝑛, along with prescribed ways of gluing them. All of this data, however, is given
abstractly.

2.2. Combinatorial
More generally, we may consider 𝑛-simplex to be a convex hull of a list of points (𝑎0, …, 𝑎𝑛), where
the set of distinct points is affinely independent, but some points may occur more times; if that
happens, such a simplex will be called degenerate. The ordering of the list naturally provides an
orientation for the simplex.

It is clear that the boundary of an 𝑛-simplex consists of 𝑘-simplices for 𝑘 < 𝑛, which are convex
hulls of subsets of its defining points.

Definition 2.2.1 :  For an 𝑛-simplex 𝑥 and 𝑖 = 0, …, 𝑛, let 𝛿𝑖𝑥 be the convex hull of all of its
defining points, except the 𝑖-th. It is called the 𝑖-th face of 𝑥.

↦

From an 𝑛-simplex, we can form a degenerate (𝑛 + 1)-simplex by duplicating some of its points.

Definition 2.2.2 :  For an 𝑛 simplex 𝑥 given by a list of points (𝑎0, …, 𝑎𝑛) and 𝑖 = 0, …, 𝑛, let
𝜎𝑖𝑥 be the convex hull of the points (𝑎0, …, 𝑎𝑖−1, 𝑎𝑖, 𝑎𝑖, 𝑎𝑖+1, …, 𝑎𝑛).

To unchain ourselves from using concrete geometric representations, we would like to present a
simplicial set 𝑋 as sets of “𝑛-simplices” 𝑋𝑛 for all 𝑛, along with boundary and degeneracy data. For
that, it better satisfy the relations that hold between geometric simplices, such as
1. 𝛿𝑖𝛿𝑗 = 𝛿𝑗−1𝛿𝑖 if 𝑖 < 𝑗
2. 𝛿𝑖𝜎𝑗 = 𝜎𝑗−1𝛿𝑖 if 𝑖 < 𝑗
3. 𝛿𝑖𝜎𝑗 = id if 𝑖 = 𝑗 or 𝑖 = 𝑗 + 1
4. 𝛿𝑖𝜎𝑗 = 𝜎𝑗𝛿𝑖−1 if 𝑖 > 𝑗 + 1
5. 𝜎𝑖𝜎𝑗 = 𝜎𝑗+1𝜎𝑖 if 𝑖 ≤ 𝑗

In fact, all relations follow from the ones above. To not having to remember and carry them all along
the way, instead, we will construct an algebraic structure that encodes them.

2.3. Algebraic
When the simplices are given orientation, they also happen to be convenient objects to represent
(higher) categorical composition in the following sense. Consider a simplex which is the hull of
points (𝑎0, …, 𝑎𝑛), view these points as objects and its edges between points 𝑎𝑖−1 and 𝑎𝑖 as
morphisms 𝑎𝑖−1 → 𝑎𝑖. Then the other 1-simplices in the boundary correspond to their various
compositions, 2-simplices to 2-morphisms witnessing the composition and so on.
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This suggest a construction of an abstract category, with the morphisms corresponding to face and
degeneracy maps. Due to conventions, the maps will go in the opposite direction.

Definition 2.3.1 :  For 𝑛 ∈ ℕ, let [𝑛] be a category with 𝑛 + 1 objects {0, …, 𝑛} and
morphisms generated by the chain

0 ← 1 ← … ← 𝑛

Let Δ be the category with objects [𝑛] for 𝑛 ∈ ℕ and morphisms the functors between these
categories. It is called the simplex category.

Remark :  Equivalently, we may define [𝑛] as the finite linearly ordered set {0 < … < 𝑛} and
the morphisms of Δ as the order preserving maps between them. We chose the preceding
definition to emphasize that [𝑛] is the 1-categorical variant of an 𝑛-simplex (its non-identity
morphisms form a 1-boundary of an 𝑛-simplex).

Of particular importance are the morphism representing face and degeneracy maps.

Definition 2.3.2 :  Fix 𝑛 ≥ 0. Let 𝑑𝑖,𝑛 : [𝑛] → [𝑛 + 1] for 𝑖 = 0, …, 𝑛 + 1 be the morphism of
Δ given by the inclusion of objects which misses the object 𝑖. It is called a face map.

Let 𝑠𝑖,𝑛 : [𝑛 + 1] → [𝑛] for 𝑖 = 0, …, 𝑛 be the morphism of Δ given by the surjection on
objects which maps 𝑖 and 𝑖 + 1 to the same object. It is called a degeneracy map.
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We will write just 𝑑𝑖, 𝑠𝑖 as 𝑛 will be clear from the context. In fact, any map in Δ can be factored as
a composition of face and degeneracy maps. Using these generating morphisms, Δ is often drawn in
the following way, with the rightward morphisms being face maps and leftward degeneracies.

[0] [1] [2] [3] …

Definition 2.3.3 :  A simplicial set is a functor 𝑋 : Δop → Set to the category of sets. We will
denote by 𝑋𝑛 its value on the object 𝑛 and call its elements the (abstract) 𝑛-simplices of 𝑋.
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Definition 2.3.4 :  Let Δ𝑛 be the representable simplicial set given by Δ𝑛
𝑘 = HomΔ([𝑘], [𝑛]).

It is the simplicial set freely generated by one non-degenerate abstract 𝑛-simplex,

Remark :  For a simplicial set 𝑋, by the Yoneda lemma, the 𝑛-simplices 𝑋𝑛 correspond to
natural transformations Nat(Δ𝑛, 𝑋).

A simplicial set can be seen as a collection of simplices along with gluing data, i.e. maps showing
which simplex is a face or a degeneracy of which. This is made explicit using geometric realization.

Definition 2.3.5 :  Let Δ𝑛 be the standard geometric 𝑛-simplex. For a simplicial set 𝑋, its
geometric realization is the topological space |𝑋| = (⨆𝑛 Δ𝑛 × 𝑋𝑛)/ ∼, with the equivalence
relation given by (𝛿𝑖𝑎, 𝑥) ∼ (𝑎, 𝑋(𝑑𝑖)𝑥) and (𝜎𝑖𝑎, 𝑥) ∼ (𝑎, 𝑋(𝑠𝑖)𝑥) for all face and
degeneracy maps.

We will now show that simplicial sets subsume two notions that we would like to generalize with
∞-categories and that are in a way the extreme cases. On one hand, topological spaces have non-
trivial 𝑛-morphisms for each 𝑛 (homotopies), but they are all invertible (by inverse homotopies). On
the other hand, categories only have non-trivial 1-morphisms, but they are non-invertible.

Although the constructions are very similar, they are by historical conventions given rather ad-hoc
sounding names.

2.4. Simplicial sets from topological spaces

Definition 2.4.1 :  For a topological space 𝑆, its singular complex is given by

Sing (𝑆)𝑛 = HomTop(Δ𝑛, 𝑆)

with the images of the maps of Δ induced by the face and degeneracy maps of simplices.

In simple terms, the 𝑛-simplices of the singular complex of 𝑆 are the geometric 𝑛-simplices in 𝑆.

2.5. Simplicial sets from categories

Definition 2.5.1 :  For a category 𝐶 , its nerve is given by

𝑁(𝐶)𝑛 = HomCat([𝑛], 𝐶)

with the images of the maps of Δ given by pre-composition.

In simple terms, the 𝑛-simplices of the nerve of 𝐶 are the chains of 𝑛 composable arrows in 𝐶 . The
morphisms are compositions and restrictions for face maps, resp. identities for degeneracies.

source

target
identity

first

composition
second

Objects of 𝐶 Morphisms of 𝐶
2 composable 
 morphisms …

Here we see the importance of degeneracy maps - they encode the identities of a category.
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2.6. Characterization of simplicial sets from topological spaces or categories
Given a simplicial set, is there a way to recognize that it is obtained as a singular complex of a space,
resp. a nerve of a category? This is done by the so called horn filling properties.

Remark :  We will commit the following abuse of notation: for a map 𝑑𝑖 and a simplicial set 𝑋,
we will denote the image 𝑋(𝑑𝑖) just as 𝑑𝑖. Be aware that the direction of the map is changed!
Analogously for 𝑠𝑖.

Definition 2.6.1 :  Let 𝜕Δ𝑛 ⊂ Δ𝑛 be the simplicial set generated by the simplices 𝑑𝑖Δ𝑛 for
𝑖 = 0, …, 𝑛. It is called the boundary of Δ𝑛.

Let Λ𝑛
𝑘 ⊂ Δ𝑛 be the simplicial set generated by the simplices 𝑑𝑖Δ𝑛 for 𝑖 = 0, …, 𝑛, 𝑖 ≠ 𝑘. It is

called the 𝑘-th horn of Δ𝑛. It is an inner horn if 0 < 𝑘 < 𝑛 and an outer horn otherwise.

For a simplicial set 𝑋, a horn in 𝑋 is a natural transformation Λ𝑛
𝑘 → 𝑋 for some 𝑛, 𝑘.

Definition 2.6.2 :  We say a horn ℎ : Λ𝑛
𝑘 → 𝑋 in 𝑋 admits a filler if there is a natural

transformation making the following diagram commutative:

ℎ
Λ𝑛

𝑘 𝑋

Δ𝑛

Exercise :  Show that for a singular complex of a topological space, every horn admits a filler
(given by projecting onto the horn).

Definition 2.6.3 :  A simplicial set is a Kan complex if every horn in it admits a filler.

Kan complexes are a good model of ∞-groupoids. It will turn out they form an ∞-category, which
we will call simply Spaces (although lately, it’s becoming popular to call it Animae). It will be as
fundamental for ∞-categories as sets are for ordinary categories. For example, as a category has a
set of morphisms between objects, an ∞-category will have a space of morphisms.

Regarding categories, if you haven’t seen it before, the following is a great exercise to ponder:

Exercise :  Show that a simplicial set is a nerve of a category if and only if every inner horn in it
admits a unique filler (given by the unique composition in the category).

2.7. Definition of ∞-categories
We are ready to introduce the definition that subsumes ordinary categories, as well as spaces.

Definition 2.7.1 :  A simplicial set is an ∞-category if every inner horn admits a filler.

We can already start to interpret the categorical language for ∞-categories.
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Definition 2.7.2 :  Let 𝐶 be an ∞-category.
1. 𝐶0 is the set of objects of 𝐶 . 𝑐 ∈ 𝐶 will mean 𝑐 ∈ 𝐶0.
2. 𝐶1 is the set of morphisms of 𝐶 . For 𝑓 ∈ 𝐶1, if 𝑐 = 𝑑1(𝑓) and 𝑑 = 𝑑0(𝑓), we will call 𝑐 its

source, 𝑑 its target and write 𝑓 : 𝑐 → 𝑑.
3. For an object 𝑐 ∈ 𝐶0, the identity of 𝑐 is the morphism id𝑐 = 𝑠0(𝑐).
4. If ℎ the third boundary morphism in the filler of the horn consisting of 𝑓  and 𝑔 (meaning

there is a 2-simplex in 𝐶2 with the boundary as drawn bellow), we call ℎ the composite of 𝑓
and 𝑔 and write ℎ ≃ 𝑓 ∘ 𝑔. Note it needn’t be unique!

⇒𝑓 𝑔

ℎ

Remark :  Although the composition is not unique, we will see that the space of compositions is
contractible. This is the right ∞-categorical analogue of uniqueness.

Definition 2.7.3 :  Two morphisms 𝑓, 𝑔 : 𝑐 → 𝑑 of an ∞-category are equivalent (we write
𝑓 ≃ 𝑔) if 𝑓 ∘ id𝑐 ≃ 𝑔 (or equivalently 𝑔 ∘ id𝑐 ≃ 𝑓 ).

Exercise :  Show that this is an equivalence relation. Show that the different choices of
composition are all equivalent.

Definition 2.7.4 :  A morphism 𝑓 : 𝑐 → 𝑑 is an isomorphism if there is a morphism 𝑔 : 𝑑 → 𝑐
such that 𝑔 ∘ 𝑓 ≃ id𝑐 and 𝑓 ∘ 𝑔 ≃ id𝑑.

Definition 2.7.5 :  An ∞-category is an ∞-groupoid if all of its morphisms are isomorphisms.

Remark :  It is straightforward that every Kan complex is an ∞-groupoid. Conversely, one can
prove that every ∞-groupoid is a Kan complex. This is a mathematically precise and valid
version of Grothendieck’s homotopy hypothesis.
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2.8. Functors
One advantage of modelling ∞-categories as weak Kan complexes is that we can immediately define
functors.

Definition 2.8.1 :  A functor 𝐹  between ∞-categories 𝐶 , 𝐷 is a natural transformation of
simplicial sets 𝐹 : 𝐶 → 𝐷.

Exercise :  Show that constructing a nerve of a category provides a fully faithful functor from 1-
categories to simplicial sets.

In light of this, for ordinary 1-categories 𝐶 , 𝐷, a functor between the ∞-categories 𝑁(𝐶), 𝑁(𝐷)
corresponds to an ordinary functor between 𝐶 and 𝐷.

Functors between two ∞-categories form an ∞-category again. To construct it, we first enrich the
category of simplicial sets over itself.

Definition 2.8.2 :  For simplicial sets 𝑆, 𝑇 , we define the simplicial set Hom(𝑆, 𝑇 ) (called
simplicial hom) by

Hom (𝑆, 𝑇 )𝑛 ≔ Nat(𝑆 × Δ𝑛, 𝑇 )

with the images of morphisms of Δ induced in the first coordinate.

For simplicial sets 𝑆, 𝑇 , 𝑈 , the composition Hom(𝑆, 𝑇 ) × Hom(𝑇 , 𝑈) → Hom(𝑆, 𝑈) is given
on 𝑛 simplices by

Hom(𝑆 × Δ𝑛, 𝑇 ) × Hom(𝑇 × Δ𝑛, 𝑈) →∘ Hom(𝑆 × Δ𝑛 × Δ𝑛, 𝑈) → Hom(𝑆 × Δ𝑛, 𝑈)

with the last map provided by the restriction along the diagonal Δ𝑛 → Δ𝑛 × Δ𝑛.

Exercise :  Show that this satisfies the axioms of a category enriched over simplicial sets.
Moreover, show that this is the exponential object in the category of simplicial sets (i.e
Hom(𝑋, −) is the right adjoint to 𝑋 × − for every simplicial set 𝑋.

Theorem 2.8.1 :  For an ∞-category 𝐶 and a simplicial set 𝐾 , Hom(𝐾, 𝐶) is an ∞-category,
which we will call Fun(𝐾, 𝐶). Moreover, if 𝐾 and 𝐶 are ∞-groupoids, Fun(𝐾, 𝐶) is again an
∞-groupoid.

Notice that 𝐾 doesn’t have to be an ∞-category (and it will sometimes be advantageous for it not to
be so, so that we don’t have to specify all the higher morphisms). We will not prove this theorem, as
it would involve too long of a detour into the combinatorics of simplicial sets, but we will sketch the
basic ideas. By adjunction, we want to show lifts of the problems of the following form:

Λ𝑛
𝑘 × 𝐾 𝐶

Δ𝑛 × 𝐾

We can turn this into a more symmetric problem by considering the unique map 𝐶 → Δ0.
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Λ𝑛
𝑘 × 𝐾 𝐶

Δ𝑛 × 𝐾 Δ0

Definition 2.8.3 :  A map of simplicial sets 𝑓 : 𝑋 → 𝑌  is called an (inner) fibration if it has
right lifting property for every (inner) horn inclusion, meaning there exists a lift in every
diagram of the following form:

𝑓

Λ𝑛
𝑘 𝑋

Δ𝑛 𝑌

Dually, a map 𝑔 is called (inner) anodyne if it has left lifting property with respect to (inner)
fibrations (a similar diagram with 𝑔 on the right and an (inner) fibration on the left).

The proof now proceeds by showing that the class of inner anodyne maps is closed under − × 𝐾 .

Definition 2.8.4 :  A functor between ∞-categories 𝑓 : 𝐶 → 𝐷 is an equivalence if there is a
functor 𝑔 : 𝐷 → 𝐶 , along with natural isomorphisms 𝑓 ∘ 𝑔 ≃ id, 𝑔 ∘ 𝑓 ≃ id.

Remark :  For ordinary categories, this corresponds to ordinary equivalence of categories; for
Kan complexes, to weak homotopy equivalence.

2.9. Mapping spaces

Definition 2.9.1 :  For objects 𝑐, 𝑑 in an ∞-category 𝐶 , the mapping space Map(𝑎, 𝑏) is the
following pullback (of simplicial sets):

(𝑐, 𝑑)

Map(𝑐, 𝑑) Fun(Δ1, 𝐶)

Δ0 Fun(𝜕Δ1, 𝐶)

In particular, the objects of Map(𝑐, 𝑑) are morphisms between 𝑐 and 𝑑 and the morphisms are
commutative squares where the horizontal arrows are identities.

Proposition 2.9.1 :  The mapping spaces are ∞-groupoids.

We are again not going to give the full proof due to its technicality. One can show that show that the
map on the right is not only a fibration, but what is called conservative fibration, which is a class
stable under pullbacks, making the map on the left a fibration.
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Definition 2.9.2 :  Let 𝑓 : 𝐶 → 𝐷 be a functor between ∞-categories. We say that 𝑓  is fully
faithful if for every 𝑐, 𝑑 ∈ 𝐶 , the induced map of mapping spaces

Map𝐶(𝑐, 𝑑) → Map𝐷(𝑓(𝑐), 𝑓(𝑑))

is a homotopy equivalence.

We say 𝑓  is essentially surjective if for every 𝑑 ∈ 𝐷, there is 𝑐 ∈ 𝐶 such that 𝑓(𝑐) ≃ 𝑑.

Theorem 2.9.1 :  A functor 𝑓 : 𝐶 → 𝐷 is an equivalence of ∞-categories iff it is fully faithful
and essentially surjective.

The proof again involves some combinatorics with fibrations.

Remark :  Similarly, we may consider the pullback

(𝑐, 𝑑, 𝑒)

Map(𝑐, 𝑑, 𝑒) Fun(Δ2, 𝐶)

Δ0 𝐶 × 𝐶 × 𝐶

It turns out the restriction map Map(𝑐, 𝑑, 𝑒) →
𝑑0,𝑑2

Map(𝑐, 𝑑) × Map(𝑑, 𝑒) is a homotopy
equivalence. Composition of morphisms now amounts to choosing a homotopy inverse

Map(𝑐, 𝑑) × Map(𝑑, 𝑒) → Map(𝑐, 𝑑, 𝑒) →
𝑑1

Map(𝑐, 𝑒)

2.10. ∞-categories from simplicially enriched categories
It would be convenient to have at our disposal the whole ∞-category of spaces, or of (small) ∞-
categories. In the sections above, we saw how to present them as categories with simplicial sets of
morphisms. We will now develop a construction to turn them into ∞ categories in our sense (i.e.
weak Kan complexes). Here, will denote the category of simplicial categories by SCat.

Definition 2.10.1 :  For two natural numbers 𝑖 ≤ 𝑗, denote as 𝑃𝑖,𝑗 the poset of subsets
{𝐼 ⊂ {𝑖, …, 𝑗} | 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐼} ordered by inclusion.

Let ℭ[Δ𝑛] be the simplicially enriched category with
• objects 0, …, 𝑛
• simplical hom-sets Hom(𝑖, 𝑗) = 𝑃𝑖,𝑗
• composition induced by union of subsets

ℭ[Δ𝑛] is to be considered as a “thickened” version of [𝑛], where the simplicial set of maps between
two elements is again empty or contractible, but now forming a simplicial cube 𝑁(𝑃𝑖,𝑗).

Definition 2.10.2 :  For a simplicial category 𝑆, let its homotopy coherent nerve be given by

𝑁(𝑆)𝑛 ≔ HomSCat(ℭ[Δ𝑛], 𝑆)

with the images of maps of Δ given by pre-composition.
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Exercise :  Show that ℭ can be extended to a functor from simplicial sets to simplicial
categories, which is the left adjoint to the homotopy coherent nerve functor (by a similar
formula to the geometric realization - the values are given on standard simplices Δ𝑛 and left
Kan extended from there).

Theorem 2.10.1 :  Let 𝑆 be a simplicially enriched category such that for all objects 𝑠, 𝑡 ∈ 𝑆,
the simplicial set Hom(𝑠, 𝑡) is a Kan complex. Then the homotopy coherent nerve 𝑁(𝑆) is an
∞-category.

Proof :  By adjunction, we have to solve the following lifting problem in simplicial categories

ℭ[Λ𝑛
𝑘 ] 𝑆

ℭ[Δ𝑛]

The simplicial category ℭ[Λ𝑛
𝑘 ] has the same objects and simplicial homs as ℭ[Δ𝑛], except

between the objcets 0 and 𝑛, where it is the nerve of poset 𝑃0,𝑛 without the maximal set and
the set of all elements except 𝑘. Extending it to 𝑁(𝑃0,𝑛) is possible because the simplicial
homs in 𝑆 are Kan complexes. □

Definition 2.10.3 :  Let Spc be the homotopy coherent nerve of the simplicial category of Kan
complexes. We will call this infinity category spaces.

Let qCat be the simplicial enriched category, whose objects are small ∞-categories and the
simplicial hom between ∞-categories 𝐶 , 𝐷 be the maximal Kan complex in Fun(𝐶, 𝐷). Let
∞ − cat be the homotopy coherent nerve of qCat.

Remark :  For Kan complexes 𝑆, 𝑇 , it can be shown that Hom(𝑆, 𝑇 ) ≃ MapSpc(𝑆, 𝑇 ).
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