Convention: I - simplicial set, C - ∞ -category, $F:I\to C$ a simplicial map. Given an object $l\in C$, we denote by

$$\underline{l}: I \to \Delta^0 \xrightarrow{l} C$$

the constant functor with value l.

1 Recall:

We have defined an ∞ -category of functors $\operatorname{Fun}(I,C)$ (or C^I) by

$$\operatorname{Fun}(I,C)_n = \operatorname{Hom}_{sSet}(I \times \Delta^n, C).$$

The mapping space $\operatorname{Map}_{C}(c,d)$ between $c,d\in C$ in the pullback

$$\begin{array}{ccc} \operatorname{Map}_{C}(c,d) & \longrightarrow & \operatorname{Fun}(\Delta^{1},C) \\ \downarrow & & \downarrow \\ \Delta^{0} & \longrightarrow & C \times C \end{array}$$

In ordinary category theory, a for a functor $F: K \to C$, $\lim F$ is a *universal cone*, or in other words it is a pair (l, η) , where $l \in C$ and $\eta: \underline{l} \to F$ such that there exists a natural bijection, for each $c \in C$

$$\operatorname{Hom}(c, \lim F) \cong \operatorname{Nat}(\underline{c}, F).$$

2 Limits

Definition 1. A cone over F is a pair (l, η) , where $l \in C$ and $\eta \in \text{Fun}(I, C)_1$ is a natural transformation $\eta : \underline{l} \to F$. It is a *limit* cone, if for each $c \in C$ the following is a homotopy equivalence

$$\operatorname{Map}_{C}(c, l) \xrightarrow{(-)} \operatorname{Map}_{C^{I}}(c, l) \xrightarrow{\eta_{*}} \operatorname{Map}_{C^{I}}(c, F)$$

In the definition above, the map $\operatorname{Map}_{C}(c,l) \xrightarrow{(-)} \operatorname{Map}_{C^{I}}(\underline{c},\underline{l})$ is induced by $\underline{(-)}: C \to \operatorname{Fun}(I,C)$. The map $\operatorname{Map}_{C^{I}}(\underline{c},\underline{l}) \xrightarrow{\eta_{*}} \operatorname{Map}_{C^{I}}(\underline{c},F)$ is postcomposition with η .

Exercise 2. Show that any two limits are isomorphic.

Exercise 3. Check out that in case I, C are (nerves of) ordinary categories, then Definition 1 recovers the ordinary notion of limits.

Example 4. Suppose I is a discrete ∞ -category. Then $C^I \cong \prod_I C$. So

$$\operatorname{Map}_{C^I}(\underline{c},F) \cong \operatorname{Map}_{\prod_I C}(\underline{c},F) \cong \prod_i \operatorname{Map}_C(c,F(i)).$$

Then $\operatorname{Map}_C(c, \lim F) \xrightarrow{\sim} \prod_i \operatorname{Map}_C(c, F(i))$. Therefore a morphism into product is up to homotopy equivalence a family of morphisms into F(i), similar to ordinary categories

Exercise 5. Put $I = \emptyset$. What is Fun(I, C)? Apply the definition of limit and characterize terminal objects in C.

Exercise 6 (Pullbacks). Put $I = \Lambda_2^2$, then $F: I \to C$ is given by a following diagram in C.

$$s \xrightarrow{g} t$$

Sketch that a map into the pullback (if exists) $r \times_t s$ is given by a commutative square (what is a 'commutative square' in ∞ -categories?)

$$\begin{array}{ccc}
c & \xrightarrow{h} r \\
\downarrow \downarrow f \\
s & \xrightarrow{g} t
\end{array}$$

where $fh \simeq gi$. Notice how the strict equality in ordinary categories is replaced by the equivalence.

Proposition 7. Spc, ∞ – cat have all small limits. The inclusion Spc $\hookrightarrow \infty$ – cat preserves all small limits.

2.1 Limits in Spc

We state a following lemma without proof and derive several results about limits in the ∞ -category **Spc**.

Lemma 8. Let C be a Kan-enriched category, $N_{\Delta}(C)$ it's homotopy coherent nerve, $F: I \to N_{\Delta}(C)$ a functor, $z \in \operatorname{\mathbf{Spc}}, x \in C$. Then

$$\underline{\operatorname{Hom}}_{Kan}(z, \operatorname{Map}_{C^I}(\underline{x}, F)) \simeq \operatorname{Map}_{\mathbf{Spc}^I}(\underline{z}, F(-)).$$

In case $C = \mathbf{Spc}$, these are also equivalent to $\mathrm{Map}_{\mathbf{Spc}^I}(z \times x, F)$.

Proposition 9. A cone (y, η) over F in **Spc** is a limit cone iff for each $x \in \mathbf{Spc}$, the map

$$\pi_0(\operatorname{Map}_{\mathbf{Spc}}(x,y) \to \pi_0(\operatorname{Map}_{\mathbf{Spc}^I}(\underline{x},F))$$

is an isomorphism.

Proof. The left to right implication is immediate. In the other direction, suppose for each $x \in \mathbf{Spc}$, the said map is an isomorphism. This is the same as to say that the set of equivalence classes of morphisms from x to y under the homotopy equivalence relation $[x, y]_{\mathbf{Spc}}$ is in natural bijection with $[\underline{x}, F]_{\mathbf{Spc}^I}$.

We prove that $[z, \operatorname{Map}_{\mathbf{Spc}}(x, y)]_{\mathbf{Spc}} \cong [z, \operatorname{Map}_{\mathbf{Spc}^I}(\underline{x}, F)]_{\mathbf{Spc}}$ for any $z \in \mathbf{Spc}$. By Yoneda lemma, this implies $\operatorname{Map}_{\mathbf{Spc}}(x, y) \simeq \operatorname{Map}_{\mathbf{Spc}^I}(\underline{x}, F)]_{\mathbf{Spc}}$.

Let $z \in \mathbf{Spc}$. Then the following diagram commutes.

$$\begin{array}{ccc} [z, \operatorname{Map}_{\mathbf{Spc}}(x,y)]_{\mathbf{Spc}} & \xrightarrow{\quad (1) \quad} [z \times x,y]_{\mathbf{Spc}} \\ & & & \downarrow^{(2)} \\ [z, \operatorname{Map}_{\mathbf{Spc}^I}(\underline{x},F)]_{\mathbf{Spc}} & \xrightarrow{\quad (4) \quad} [z \times x,F]_{\mathbf{Spc}^I} \end{array}$$

We comment on the maps above

- (1) is the application of the observation $\operatorname{Map}_{\mathbf{Spc}}(x,y)]_{\mathbf{Spc}} = \underline{\operatorname{Hom}}_{sSet}(x,y)$ and of simplicial inner hom adjunction;
- (2) is given by assumption;
- (3) is given by post-composition with the limit property;
- (4) is given by Lemma 8.

Moreover, (1), (2), (3) are isomorphisms, so (3) has to be one.

Proposition 10. For any functor $F: I \to \mathbf{Spc}$, the space $\mathrm{Map}_{\mathbf{Spc}^I}(\underline{\Delta^0}, F)$ is the limit of F. Therefore \mathbf{Spc} has all small limits.

Sketch. For each $x \in \mathbf{Spc}$,

$$\operatorname{Map}_{\mathbf{Spc}}(x,\operatorname{Map}_{\mathbf{Spc}^I}(\underline{\Delta^0},F)) \xrightarrow[\operatorname{Lemma\ 8}]{\sim} \operatorname{Map}_{\mathbf{Spc}^I}(\underline{x\times\Delta^0},F) \xrightarrow{\sim} \operatorname{Map}_{\mathbf{Spc}^I}(\underline{x},F)$$

The cone is given by putting $x = \operatorname{Map}_{\mathbf{Spc}^I}(\underline{\Delta^0}, F)$ and computing the image of the identity.

Exercise 11. Let $x \in \mathbf{Spc}$ and $F : I \in \mathbf{Spc}$ a constant functor on x (\underline{x} in our notation). Compute the $\lim F$.

3 Colimits

Definition 12 (Dual). A cone under F is a pair (l, η) , where $l \in C$ and $\eta \in \text{Fun}(I, C)_1$ is a natural transformation $\eta: F \to \underline{l}$. It is a colimit cone, if for each $c \in C$ the induced map

$$\operatorname{Map}_{C}(l,c) \xrightarrow{\sim} \operatorname{Map}_{C^{I}}(F,\underline{c})$$

is a homotopy equivalence.

The following examples are similar to the case of limits.

Example 13. (i) $l \in C$ is initial iff Map(l, c) is contractible for all $c \in C$.

(i)
$$\operatorname{Map}_C(\coprod_i F(i), c) \cong \prod_i \operatorname{Map}_C(F(i), c)$$
.

Example 14. For pushouts there is a formula

$$\operatorname{Map}_{C}(y \coprod_{x} z) \simeq \operatorname{Map}_{C}(y, c) \times_{\operatorname{Map}_{C}(x, c)} \operatorname{Map}_{C}(z, c),$$

where the right-hand side denotes the pullback in **Spc**.

Proposition 15. TFAE

- (i) C admits (finite) colimits
- (ii) C admits coequalizers and (finite) coproducts.
- (iii) C admits pushouts and (finite) coproducts.

The dual statement hold for limits.