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Motivation





Brouwer’s fixed point theorem: informal
We cannot ever perfectly mix coffee.



Brouwer’s fixed point theorem: rigorous
We cannot ever perfectly mix coffee.

There is no continuous map 𝔻2 → 𝔻2 without fixed point.

Here 𝔻2 = {𝑥 ∈ ℝ2 : |𝑥| ≤ 1} 



Brouwer’s fixed point theorem: formal
We cannot ever perfectly mix coffee.

There is no continuous map 𝔻2 → 𝔻2 without fixed point.

∀𝑓 : 𝔻2 → 𝔻2∃𝑥 ∈ 𝔻2𝑓(𝑥) = 𝑥



Brouwer’s fixed point theorem: start of a proof
Supporse there is a continuous map 𝔻2 → 𝔻2 without fixed point.

∀𝑥 ∈ 𝔻2𝑓(𝑥) ≠ 𝑥
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Brouwer’s fixed point theorem: start of a proof
Supporse there is a continuous map 𝔻2 → 𝔻2 without fixed point.

Follow rays from 𝑓(𝑥) to 𝑥 until they intersect the boundary circle 𝕊1.
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Brouwer’s fixed point theorem: start of a proof
Follow rays from 𝑓(𝑥) to 𝑥 until they intersect the boundary circle 𝕊1.

This gives a continuous map 𝑟 : 𝔻2 → 𝕊1 which is an identity on 𝕊1.
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Topology

A general study of continuous maps



What is a space?

In this lecture: a subset of ℝ𝑛

In the wild nature: topological space (a very abstract and general
definition)



From now on, map will mean continuous function.



What is a topological equivalence?



What is a topological equivalence?
Injective and surjective continuous map? 



What is a topological equivalence?
Injective and surjective continuous map? Not good.

Hilbert curve: a curve that fills the whole square



What is a topological equivalence?

A map 𝑓 : 𝑆 → 𝑇  is called a homeomorphism if it has a two-sided
continuous inverse, i.e. there is a map 𝑔 : 𝑇 → 𝑆 such that both
composites 𝑓𝑔 and 𝑔𝑓  are identity.
Then 𝑆 and 𝑇  are called homeomorphic (just a fancy word for
topologically equivalent).



What is a topological equivalence?

A map 𝑓 : 𝑆 → 𝑇  is called a homeomorphism if it has a two-sided
continuous inverse, i.e. there is a map 𝑔 : 𝑇 → 𝑆 such that both
composites 𝑓𝑔 and 𝑔𝑓  are identity.
Then 𝑆 and 𝑇  are called homeomorphic (just a fancy word for
topologically equivalent).

Example: ℝ2 is not homeomorphic to ℝ3 nor to 𝕊1.



Example: a topologist doesn’t know a difference
between a cup and a donut



Is the open unit disk homeomorphic to ℝ2?

𝔻2𝑜 = {𝑥 ∈ ℝ2 : |𝑥| < 1}



Is the open unit disk homeomorphic to ℝ2?

𝔻2𝑜 = {𝑥 ∈ ℝ2 : |𝑥| < 1}

Yes, the homeomorphism is given in polar coordinates by
(𝑟, 𝜑) ↦ (tan(𝜋2 𝑟), 𝜑)



Is the open unit disk homeomorphic to ℝ2?

𝔻2𝑜 = {𝑥 ∈ ℝ2 : |𝑥| < 1}

Yes, the homeomorphism is given in polar coordinates by
(𝑟, 𝜑) ↦ (tan(𝜋2 𝑟), 𝜑)

Analogous result holds for ℝ𝑛.



Is 𝕊𝑛 homeomorphic to ℝ𝑛?

𝕊𝑛 = {𝑥 ∈ ℝ𝑛+1 : |𝑥| = 1}



Is 𝕊𝑛 homeomorphic to ℝ𝑛?

𝕊𝑛 = {𝑥 ∈ ℝ𝑛+1 : |𝑥| = 1}

No; not completely trivial to prove.



Is 𝕊𝑛 with one point removed homeomorphic to ℝ𝑛?

e. g. 𝕊𝑛 \ {(0, 0, 1)}



Is 𝕊𝑛 with one point removed homeomorphic to ℝ𝑛?

e. g. 𝕊𝑛 \ {(0, 0, 1)}

Yes, the homeomorphism is given by the stereographic projection.



Dirac belt trick

Have a belt with one end fixed and one twist.
It cannot be straightened without rotating the buckle.



Dirac belt trick

Have a belt with one end fixed and two twists.
It can be straightened without rotating the buckle!



Dirac belt trick: what’s going on?
As we traverse the belt, track the unit vectors:
(in the belt direction; to the side; perpendicular to the belt)



Dirac belt trick: what’s going on?
As we traverse the belt, track the unit vectors:
(in the belt direction; to the side; perpendicular to the belt)
We get a path in the space of orthogonal vector triples (subset of ℝ3×3)



Space of orthonormal positively oriented triples in ℝ3

Elements may be written as matrices. 

(
𝑢1
𝑢2
𝑢3

𝑣1
𝑣2
𝑣3

𝑤1
𝑤2
𝑤3
)



Space of orthonormal positively oriented triples in ℝ3

Elements may be written as matrices. These are the rotation matrices.

(
𝑢1
𝑢2
𝑢3

𝑣1
𝑣2
𝑣3

𝑤1
𝑤2
𝑤3
)



Space of orthonormal positively oriented triples in ℝ3

Elements may be written as matrices. These are the rotation matrices.
This space of rotations is called 𝑆𝑂(3) (special orthogonal group).

(
𝑢1
𝑢2
𝑢3

𝑣1
𝑣2
𝑣3

𝑤1
𝑤2
𝑤3
)



The belt corresponds to a path in 𝑆𝑂(3)
Path: a continuous function [0, 1] → 𝑆𝑂(3)



The belt corresponds to a path in 𝑆𝑂(3)
Path: a continuous function [0, 1] → 𝑆𝑂(3)
Fixing the ends of belt amounts to fixing the endpoints of the path.



The belt corresponds to a path in 𝑆𝑂(3)
Path: a continuous function [0, 1] → 𝑆𝑂(3)
Fixing the ends of belt amounts to fixing the endpoints of the path.
Moving the belt amounts to deforming the path.



Homotopies: deformations formally

Let 𝑓, 𝑔 : 𝑆 → 𝑇  be maps between spaces. They are called homotopic if
there is a map 𝐻 : 𝑆 × [0, 1] → 𝑇  such that for all 𝑥 ∈ 𝑆:

• 𝐻(𝑥, 0) = 𝑓(𝑥)
• 𝐻(𝑥, 1) = 𝑔(𝑥)
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Homotopies: deformations formally

Let 𝑓, 𝑔 : 𝑆 → 𝑇  be maps between spaces. They are called homotopic if
there is a map 𝐻 : 𝑆 × [0, 1] → 𝑇  such that for all 𝑥 ∈ 𝑆:

• 𝐻(𝑥, 0) = 𝑓(𝑥)
• 𝐻(𝑥, 1) = 𝑔(𝑥)

𝐻  is called homotopy.
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Homotopy: an example

Identity on ℝ𝑛 is homotopic to a constant map to origin via the map
𝐻(𝑥, 𝑡) = 𝑡𝑥



What is a homotopy equivalence?

A map 𝑓 : 𝑆 → 𝑇  is called a homotopy equivalence if there is 𝑔 : 𝑇 → 𝑆
such that both composites 𝑓𝑔 and 𝑔𝑓  are homotopic to identity.



What is a homotopy equivalence?

A map 𝑓 : 𝑆 → 𝑇  is called a homotopy equivalence if there is 𝑔 : 𝑇 → 𝑆
such that both composites 𝑓𝑔 and 𝑔𝑓  are homotopic to identity.

Each homeomorphism is a homotopy equivalence (but not vice versa!)



What is a homotopy equivalence?

A map 𝑓 : 𝑆 → 𝑇  is called a homotopy equivalence if there is 𝑔 : 𝑇 → 𝑆
such that both composites 𝑓𝑔 and 𝑔𝑓  are homotopic to identity.

Each homeomorphism is a homotopy equivalence (but not vice versa!)

Example: ℝ𝑛 is homotopy equivalent to a point. Such a space will be
called contractible.



What is a homotopy equivalence?

A map 𝑓 : 𝑆 → 𝑇  is called a homotopy equivalence if there is 𝑔 : 𝑇 → 𝑆
such that both composites 𝑓𝑔 and 𝑔𝑓  are homotopic to identity.

Each homeomorphism is a homotopy equivalence (but not vice versa!)

Example: ℝ𝑛 is homotopy equivalent to a point. Such a space will be
called contractible.

Example: Circle is homotopy equivalent to annulus.



Loop space

Let ∗ ∈ 𝑆. Define Ω(𝑆, ∗) = {𝜌 : [0, 1] → 𝑆 | 𝜌(0) = 𝜌(1) = ∗}.

This is a set of all loops in 𝑆 beginning and ending in ∗.



Product of loops

Ω(𝑆, ∗) = {𝜌 : [0, 1] → 𝑆 | 𝜌(0) = 𝜌(1) = ∗}

For 𝜌, 𝜏 ∈ Ω(𝑆, ∗), define their product 𝜌𝜏 : [0, 1] → 𝑆 by:
• 𝜌𝜏(𝑡) = 𝜌(2𝑡) for 𝑡 ∈ [0, 12]
• 𝜌𝜏(𝑡) = 𝜏(2(𝑡 − 1

2)) for 𝑡 ∈ [12 , 1]

We just go around the first loop and then around the second one.



The group axioms in Ω(𝑆, ∗) hold only up to
homotopy (constant at the point ∗)

• (𝜌𝜎)𝜏 ∼ 𝜌(𝜎𝜏)
• 𝑒𝜌 ∼ 𝜌 ∼ 𝜌𝑒
• 𝜌𝜌−1 ∼ 𝑒 ∼ 𝜌−1𝜌

where
𝑒(𝑡) = ∗
𝜌−1(𝑡) = 𝜌(1 − 𝑡)



Solution: factor Ω(𝑆, ∗) by homotopies
constant at ∗.

𝜋1(𝑆, ∗) = Ω(𝑆, ∗)/ ∼

It is called the fundamental group of 𝑆 at ∗.



Aside: what if we remembered all the homotopies?



Aside: what if we remembered all the homotopies?

There are shapes called associahedra tracking the higher homotopies.
The corresponding algebraic object is called 𝐴∞ algebra.



𝜋1(𝑆, ∗) for 𝑆 contractible and any ∗ ∈ 𝑆 is the trivial group 1.

Every loop can be contracted to identity (so it’s homotopic to it).



𝜋1(𝑆, ∗) for 𝑆 contractible and any ∗ ∈ 𝑆 is the trivial group 1.

Every loop can be contracted to identity (so it’s homotopic to it).

E.g. 𝜋1(ℝ𝑛, 0) = 1.



A space 𝑆 is called path connected if there is a path between any two of
its points.

For all 𝑎, 𝑏 ∈ 𝑆, there is 𝜑 : [0, 1] → 𝑆 with 𝜑(0) = 𝑎 and 𝜑(1) = 𝑏.



Proposition: For 𝑆 path connected and 𝑎, 𝑏 ∈ 𝑆, 𝜋1(𝑆, 𝑎) is isomorphic
to 𝜋1(𝑆, 𝑏).



Proposition: For 𝑆 path connected and 𝑎, 𝑏 ∈ 𝑆, 𝜋1(𝑆, 𝑎) is isomorphic
to 𝜋1(𝑆, 𝑏).

Let 𝜑 be a path between 𝑎 and 𝑏.
The isomorphism is given by 𝜌 ↦ 𝜑𝜌𝜑1.



Fundamental group of a path connected 𝑆

In light of the previous proposition, we will denote by 𝜋1(𝑆) the group
𝜋1(𝑆, ∗) for any ∗ ∈ 𝑆.



𝜋1(𝕊𝑛) is trivial for 𝑛 ≥ 2



𝜋1(𝕊𝑛) is trivial for 𝑛 ≥ 2

• For a loop 𝜌, find 𝑥 ∈ 𝕊2 not in the image of 𝜌.
• Project stereographically from 𝑥 to ℝ𝑛.
• Contract in ℝ𝑛.



The previous argument is NOT always correct
We need to carefully deform a curve 𝜌 that fills the whole sphere to a
one that doesn’t in order to find the 𝑥 not in the image of 𝜌.



Group homomorphisms

Let 𝐺 be a group with multiplication ∗ and 𝐻  a group with
multiplication ⊙.
A function 𝑓 : 𝐺 → 𝐻  is called a homomorphism if it preserves the
group stucutre, i.e. for 𝑔, ℎ ∈ 𝐺:

𝑓(𝑔 ∗ ℎ) = 𝑓(𝑔) ⊙ 𝑓(ℎ)



Group homomorphisms

Let 𝐺 be a group with multiplication ∗ and 𝐻  a group with
multiplication ⊙.
A function 𝑓 : 𝐺 → 𝐻  is called a homomorphism if it preserves the
group stucutre, i.e. for 𝑔, ℎ ∈ 𝐺:

𝑓(𝑔 ∗ ℎ) = 𝑓(𝑔) ⊙ 𝑓(ℎ)

Don’t confuse them with hom*e*omorphisms! It’s a standard
terminology :/



𝜋1 is a functor = respects maps 

For ∗ ∈ 𝑆 and 𝑓 : 𝑆 → 𝑇 , there is an induced homomorphism

𝜋1(𝑓) : 𝜋1(𝑆, ∗) → 𝜋1(𝑇 , 𝑓(∗))

mapping the class of a loop
𝜌 : [0, 1] → 𝑆 to the class of a loop 𝑓 ∘ 𝜌 : [0, 1] → 𝑇 .



𝜋1 is a functor = respects maps + their compositions

For ∗ ∈ 𝑆 and 𝑓 : 𝑆 → 𝑇 , there is an induced homomorphism

𝜋1(𝑓) : 𝜋1(𝑆, ∗) → 𝜋1(𝑇 , 𝑓(∗))

mapping the class of a loop
𝜌 : [0, 1] → 𝑆 to the class of a loop 𝑓 ∘ 𝜌 : [0, 1] → 𝑇 .

It respects the composition of maps, so for 𝑓 : 𝑆 → 𝑇  and 𝑔 : 𝑇 → 𝑈 ,
𝜋1(𝑔 ∘ 𝑓) = 𝜋1(𝑔) ∘ 𝜋1(𝑓).



𝜋1 is a functor = respects maps + their compositions

For ∗ ∈ 𝑆 and 𝑓 : 𝑆 → 𝑇 , there is an induced homomorphism

𝜋1(𝑓) : 𝜋1(𝑆, ∗) → 𝜋1(𝑇 , 𝑓(∗))

mapping the class of a loop
𝜌 : [0, 1] → 𝑆 to the class of a loop 𝑓 ∘ 𝜌 : [0, 1] → 𝑇 .

It respects the composition of maps, so for 𝑓 : 𝑆 → 𝑇  and 𝑔 : 𝑇 → 𝑈 ,
𝜋1(𝑔 ∘ 𝑓) = 𝜋1(𝑔) ∘ 𝜋1(𝑓).

This means we can think of 𝜋1 as a “portal” from spaces to groups.



How to compute the fundamental group?



Covering of the circle by the real line
Consider the map 𝑝 : ℝ1 → 𝕊1 given by 𝑝(𝑡) = (cos 2𝜋𝑡, sin 2𝜋𝑡).
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Coverings
A map 𝑝 : 𝐸 → 𝐵 is called a covering if the following is satisfied:
• each 𝑏 ∈ 𝐵 has a neighbourhood 𝑈  such that 𝑝−1(𝑈) is a disjoint

union of spaces homeomorphic to 𝑈
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Neighbourhoods formally

For a metric space 𝑀  with the distance 𝑑 and 𝑥 ∈ 𝑀 , let the open ball
around 𝑥 of radius 𝑟 be 𝐵(𝑥, 𝑟) = {𝑦 ∈ 𝑀 : 𝑑(𝑥, 𝑦) < 𝑟}.

A set 𝑂 ⊂ 𝑀  is a neighbourhood of 𝑥 ∈ 𝑂 if it contains some open ball
around 𝑥.



Covering of the circle by the real line
The map 𝑝 : ℝ1 → 𝕊1 given by 𝑝(𝑡) = (cos 2𝜋𝑡, sin 2𝜋𝑡) is a covering:

For each 𝑡 ∈ ℝ1, there is an open interval (𝑡 − 𝜀, 𝑡 + 𝜀) where sin and
cos are invertible.

Its preimage is a disjoint union of such intervals.



Paths in 𝐵 can be uniquely lifted to 𝐸

Proposition: For a covering 𝐸 → 𝐵 along with:
• 𝑏 ∈ 𝐵
• a path 𝜑 in 𝐵 with 𝜑(0) = 𝑏
• 𝑒 ∈ 𝐸 with 𝑝(𝑒) = 𝑏,

there is a unique path �̃� in 𝐸 with �̃�(0) = 𝑒 and 𝑝(�̃�) = 𝜑.

The proof uses Heine-Borel theorem.



Homotopies in 𝐵 can be uniquely lifted to 𝐸

Proposition: For a covering 𝐸 → 𝐵 along with:
• 𝑏 ∈ 𝐵
• paths 𝜑, 𝜓 in 𝐵 with 𝜑(0) = 𝑏 = 𝜓(0)
• 𝑒 ∈ 𝐸 with 𝑝(𝑒) = 𝑏,
• homotopy 𝐻  between 𝜑 and 𝜓

there is a unique lift �̃�  as a homotopy between �̃� and 𝜓.

The proof is completely analogous to the previous.



Fibers in coverings

For a covering 𝑝 : 𝐸 → 𝐵 and 𝑏 ∈ 𝐵, the preimage 𝑝−1(𝑏) is a discrete
set of points.

It is called the fiber of 𝑏.



For a covering 𝑝 : 𝐸 → 𝐵, a map 𝑓 : 𝐸 → 𝐸 is called a deck
transformation if it respects the covering, i.e. 𝑝𝑓 = 𝑝.

Deck transformations of a covering form a group called 𝐺(𝐸).



A covering 𝑝 : 𝐸 → 𝐵 is called universal if
𝐸 is path connected and 𝜋1(𝐸) is trivial.



Proposition: For a universal covering 𝐸 → 𝐵 and 𝑏 ∈ 𝐵, the deck
transformations correspond to the points of the fiber 𝑝−1(𝑏).



Proposition: For a universal covering 𝐸 → 𝐵 and 𝑏 ∈ 𝐵, the deck
transformations correspond to the points of the fiber 𝑝−1(𝑏).

Let 𝑒0 ∈ 𝐸 and pick its image 𝑓(𝑒0). For 𝑒 ∈ 𝐸, pick a path 𝜑 from 𝑒0 to
𝑒. There is a unique lift �̂� of 𝑝𝜑 starting at 𝑓(𝑒0).
Define 𝑓(𝑒) = �̂�(1). Check that this is well defined.



What is a group equivalence?

A homomorphism 𝑓 : 𝐺 → 𝐻  is called an isomorphism if it has a two-
sided homomorphism inverse, i.e. there is a homomorphism 𝑔 : 𝐻 → 𝐺
such that both composites 𝑓𝑔 and 𝑔𝑓  are identity.
Then 𝑆 and 𝑇  are called isomorphic (just a fancy word for group-like
equivalent).



Theorem: For a universal path connected covering 𝑝 : 𝐸 → 𝐵,
𝜋1(𝐵) is isomorphic to the group of deck transformations 𝐺(𝐸).



Theorem: For a universal path connected covering 𝑝 : 𝐸 → 𝐵,
𝜋1(𝐵) is isomorphic to the group of deck transformations 𝐺(𝐸).

Pick 𝑏 ∈ 𝐵 and 𝑒 ∈ 𝑝−1(𝑏).

[𝜑] ↦ 𝑑�̃�(𝑒) (the deck transformation mapping 𝑒 to �̃�(𝑒))

𝑑 ↦ 𝑝 ∘ 𝜌𝑑 for a path 𝜌𝑑 connecting 𝑒 and 𝑑𝑒
Check that these are mutually inverse homomorphisms.



Application: the fundamental group of 𝕊1

We have a covering 𝑝 : ℝ1 → 𝕊1, 𝑝(𝑡) = (cos 2𝜋𝑡, sin 2𝜋𝑡). What is the
group of deck transformations?



Application: the fundamental group of 𝕊1

We have a covering 𝑝 : ℝ1 → 𝕊1, 𝑝(𝑡) = (cos 2𝜋𝑡, sin 2𝜋𝑡). What is the
group of deck transformations?

𝑝−1((1, 0)) = ℤ.
The deck transformations are translations mapping ℤ to ℤ.
This group is isomorphic to ℤ with addition.



Application: Brouwer’s fixed point theorem
Supporse there is a continuous map 𝔻2 → 𝔻2 without fixed point.

Follow rays from 𝑓(𝑥) to 𝑥 until they intersect the boundary circle 𝕊1.

This gives a continuous map 𝑟 : 𝔻2 → 𝕊1 which is an identity on 𝕊1.
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Application: Brouwer’s fixed point theorem
There is also the inclusion 𝑖 : 𝕊1 → 𝔻2 and the composite
𝑟𝑖 : 𝕊1 → 𝔻2 → 𝕊1 is identity.



Application: Brouwer’s fixed point theorem
There is also the inclusion 𝑖 : 𝕊1 → 𝔻2 and the composite
𝑟𝑖 : 𝕊1 → 𝔻2 → 𝕊1 is identity.

Apply the fundamental group to this sequence:
𝜋1(𝕊1) → 𝜋1(𝔻2) → 𝜋1(𝕊1) must be identity.



Application: Brouwer’s fixed point theorem
There is also the inclusion 𝑖 : 𝕊1 → 𝔻2 and the composite
𝑟𝑖 : 𝕊1 → 𝔻2 → 𝕊1 is identity.

Apply the fundamental group to this sequence:
𝜋1(𝕊1) → 𝜋1(𝔻2) → 𝜋1(𝕊1) must be identity.

But this means we must have homomorphisms
ℤ → 1 → ℤ
whose composite is identity. A contradiction!



Application: wedge of 2 circles



Wedge of 2 circles: covering
An infinite tree.



Free group with 2 generators

• Elements: strings of letters 𝑎, 𝑏, 𝑎−1, 𝑏−1
• Group operation: concatenation of words
• Neutral element: empty word
• Substrings 𝑎𝑎−1, 𝑏−1𝑏 and so on get erased



Free group with 2 generators

• Elements: strings of letters 𝑎, 𝑏, 𝑎−1, 𝑏−1
• Group operation: concatenation of words
• Neutral element: empty word
• Substrings 𝑎𝑎−1, 𝑏−1𝑏 and so on get erased

It’s the fundamental group of the wedge of 2 circles.



Analogously, the fundamental group of the wedge of 𝑛 circles
is the free group with 𝑛 generators.



What is the fundamental group of a connected graph?



Theorem: Let 𝐵 be a space for which there exists an universal
covering.

Then there is a correspondence:
coverings of 𝐵

↔
subgroups of 𝜋1(𝐵)



Nielsen-Schreier theorem: Every subgroup of a free group is free.



Nielsen-Schreier theorem: Every subgroup of a free group is free.

Proof: A covering of a wedge of circles is a graph.



Rotations can be represented by quaternions.
Nice explanation how it works at https://marctenbosch.com/quaternions
Each rotation is represented by two quaternions: 𝑞, −𝑞.
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Rotations can be represented by quaternions.
Nice explanation how it works at https://marctenbosch.com/quaternions
Each rotation is represented by two quaternions: 𝑞, −𝑞.

This shows that 𝕊3 (the space of unit quaternions) is a double cover of
𝑆𝑂(3). So the fundamental group of 𝑆𝑂(3) must be ℤ2.

https://marctenbosch.com/quaternions


Higher homotopy groups (of a space 𝑆 at ∗ ∈ 𝑆)

Ω𝑛(𝑆, ∗) = { maps [0, 1]𝑛 → 𝑆 with the boundary mapped to ∗}

𝜋𝑛(𝑆, ∗) = Ω𝑛(𝑆, ∗)/ ∼ (factored by homotopies)



Group structure on 𝜋2(𝑆, ∗)

We can define horizontal and vertical composition.

φ ψ
φ

ψ



Group structure on 𝜋2(𝑆, ∗)

We can define horizontal and vertical composition.

These coincide and it shows the composition is commutative.

φ

ψid

id



Group structure on 𝜋2(𝑆, ∗)

We can define horizontal and vertical composition.

These coincide and it shows the composition is commutative.

The same holds for 𝜋𝑛(𝑆, ∗), 𝑛 > 2.



Theorem: A covering 𝑝 : 𝐸 → 𝐵 provides an isomorphism
𝜋𝑛(𝑝) : 𝜋𝑛(𝐸) → 𝜋𝑛(𝐵) for all 𝑛 ≥ 2.



Theorem: A covering 𝑝 : 𝐸 → 𝐵 provides an isomorphism
𝜋𝑛(𝑝) : 𝜋𝑛(𝐸) → 𝜋𝑛(𝐵) for all 𝑛 ≥ 2.

Thanks to this, 𝜋𝑛(𝕊1) is trivial for 𝑛 ≥ 2.



Homotopy groups of spheres: facts

• 𝜋𝑖(𝕊𝑛) is trivial for 𝑖 < 𝑛
• 𝜋𝑛(𝕊𝑛) = ℤ
•
•
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Homotopy groups of spheres: facts

• 𝜋𝑖(𝕊𝑛) is trivial for 𝑖 < 𝑛
• 𝜋𝑛(𝕊𝑛) = ℤ
• 𝜋𝑖(𝕊𝑛) is finite for 𝑖 > 𝑛, except for 𝜋4𝑘−1(𝕊2𝑘+1) (Serre)
• 𝜋𝑖(𝕊𝑛) is isomorphic to 𝜋𝑖+1(𝕊𝑛+1) for 𝑖 < 2𝑛 − 1

(Freudenthal suspension theorem)



In general, the patterns of higher homotopy groups of spheres remain
shrouded in mystery.
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