Fundamental group

Maroš Grego maros@grego.site

Motivation

Brouwer's fixed point theorem: informal

We cannot ever perfectly mix coffee.

Brouwer's fixed point theorem: rigorous

We cannot ever perfectly mix coffee.

There is no continuous map $\mathbb{D}^2 \to \mathbb{D}^2$ without fixed point. Here $\mathbb{D}^2 = \{x \in \mathbb{R}^2 : |x| \le 1\}$

Brouwer's fixed point theorem: formal

We cannot ever perfectly mix coffee.

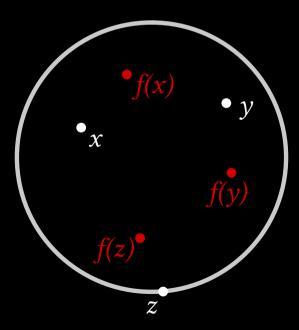
There is no continuous map $\mathbb{D}^2 \to \mathbb{D}^2$ without fixed point.

 $\forall f: \mathbb{D}^2 \to \mathbb{D}^2 \exists x \in \mathbb{D}^2 f(x) = x$

Brouwer's fixed point theorem: start of a proof

Supporse there is a continuous map $\mathbb{D}^2 \to \mathbb{D}^2$ without fixed point.

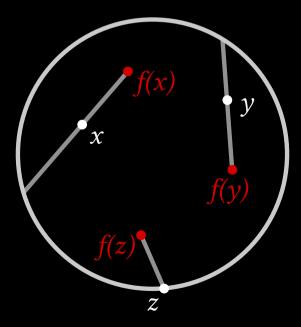
 $\forall x \in \mathbb{D}^2 f(x) \neq x$



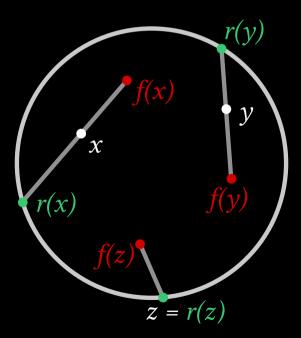
Brouwer's fixed point theorem: start of a proof

Supporse there is a continuous map $\mathbb{D}^2 \to \mathbb{D}^2$ without fixed point.

Follow rays from f(x) to x until they intersect the boundary circle \mathbb{S}^1 .



Brouwer's fixed point theorem: start of a proof Follow rays from f(x) to x until they intersect the boundary circle \mathbb{S}^1 . This gives a continuous map $r : \mathbb{D}^2 \to \mathbb{S}^1$ which is an identity on \mathbb{S}^1 .



Topology

A general study of continuous maps

What is a space?

In this lecture: a subset of \mathbb{R}^n

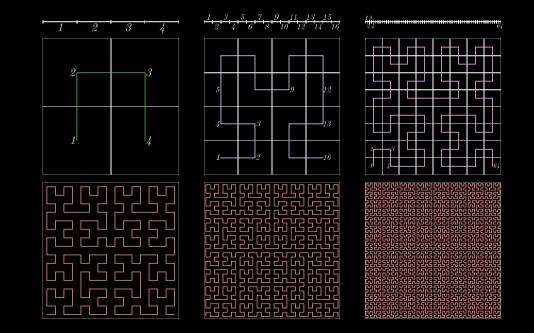
In the wild nature: *topological space* (a very abstract and general definition)

From now on, *map* will mean **continuous** function.

Injective and surjective continuous map?

Injective and surjective continuous map? Not good.

Hilbert curve: a curve that fills the whole square

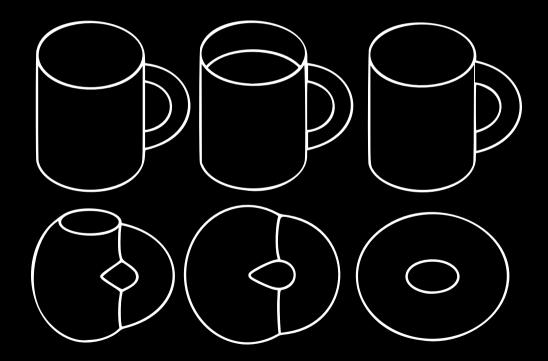


A map $f: S \to T$ is called a *homeomorphism* if it has a two-sided continuous inverse, i.e. there is a map $g: T \to S$ such that both composites fg and gf are identity. Then S and T are called homeomorphic (just a fancy word for topologically equivalent).

A map $f: S \to T$ is called a *homeomorphism* if it has a two-sided continuous inverse, i.e. there is a map $g: T \to S$ such that both composites fg and gf are identity. Then S and T are called homeomorphic (just a fancy word for topologically equivalent).

Example: \mathbb{R}^2 is not homeomorphic to \mathbb{R}^3 nor to \mathbb{S}^1 .

Example: a topologist doesn't know a difference between a cup and a donut



Is the open unit disk homeomorphic to \mathbb{R}^2 ?

 $\overline{\mathbb{D}_o^2} = \left\{ x \in \mathbb{R}^2 : |x| < 1 \right\}$

Is the open unit disk homeomorphic to \mathbb{R}^2 ?

$$\mathbb{D}_{o}^{2} = \left\{ x \in \mathbb{R}^{2} : |x| < 1 \right\}$$

Yes, the homeomorphism is given in polar coordinates by $(r,\varphi)\mapsto \left(\tan\left(\frac{\pi}{2}r\right),\varphi\right)$

Is the open unit disk homeomorphic to \mathbb{R}^2 ?

$$\mathbb{D}_{o}^{2} = \left\{ x \in \mathbb{R}^{2} : |x| < 1 \right\}$$

Yes, the homeomorphism is given in polar coordinates by $(r,\varphi)\mapsto \left(\tan\left(\frac{\pi}{2}r\right),\varphi\right)$

Analogous result holds for \mathbb{R}^n .

Is \mathbb{S}^n homeomorphic to \mathbb{R}^n ?

$$\mathbb{S}^n = \left\{ x \in \mathbb{R}^{n+1} : |x| = 1 \right\}$$

Is \mathbb{S}^n homeomorphic to \mathbb{R}^n ?

$$\mathbb{S}^n = \left\{ x \in \mathbb{R}^{n+1} : |x| = 1 \right\}$$

No; not completely trivial to prove.

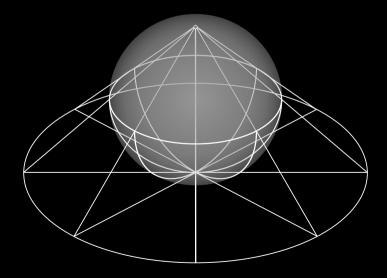
Is \mathbb{S}^n with one point removed homeomorphic to \mathbb{R}^n ?

e. g. $\mathbb{S}^n \setminus \{(0,0,1)\}$

Is \mathbb{S}^n with one point removed homeomorphic to \mathbb{R}^n ?

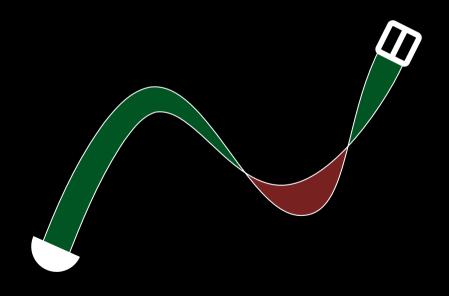
e. g. $\mathbb{S}^n \setminus \{(0,0,1)\}$

Yes, the homeomorphism is given by the stereographic projection.



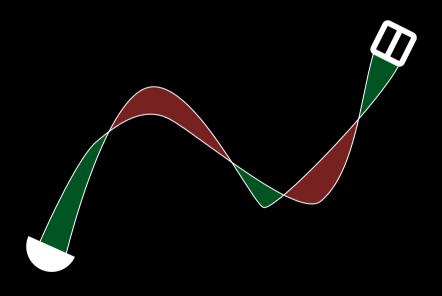
Dirac belt trick

Have a belt with one end fixed and one twist. It **cannot** be straightened without rotating the buckle.



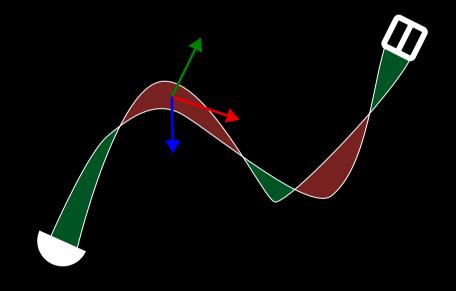
Dirac belt trick

Have a belt with one end fixed and **two** twists. It **can** be straightened without rotating the buckle!



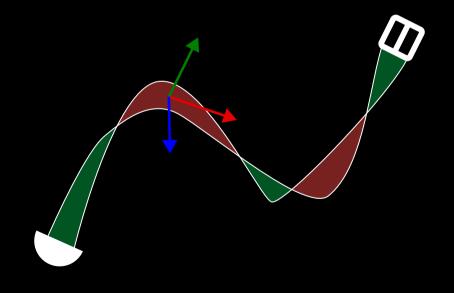
Dirac belt trick: what's going on?

As we traverse the belt, track the unit vectors: (in the belt direction; to the side; perpendicular to the belt)



Dirac belt trick: what's going on?

As we traverse the belt, track the unit vectors: (in the belt direction; to the side; perpendicular to the belt) We get a path in the space of orthogonal vector triples (subset of $\mathbb{R}^{3\times 3}$)



Space of orthonormal positively oriented triples in \mathbb{R}^3

Elements may be written as matrices.

$$egin{pmatrix} u_1 & v_1 & w_1 \ u_2 & v_2 & w_2 \ u_3 & v_3 & w_3 \end{pmatrix}$$

Space of orthonormal positively oriented triples in \mathbb{R}^3

Elements may be written as matrices. These are the rotation matrices.

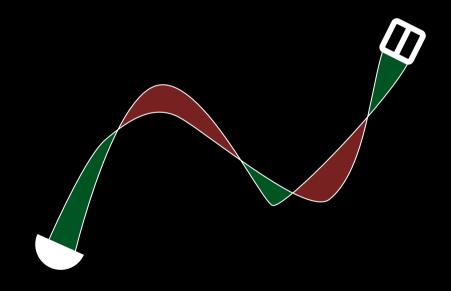
$$egin{pmatrix} u_1 & v_1 & w_1 \ u_2 & v_2 & w_2 \ u_3 & v_3 & w_3 \end{pmatrix}$$

Space of orthonormal positively oriented triples in \mathbb{R}^3

Elements may be written as matrices. These are the rotation matrices. This space of rotations is called SO(3) (*special orthogonal* group).

$$egin{pmatrix} u_1 & v_1 & w_1 \ u_2 & v_2 & w_2 \ u_3 & v_3 & w_3 \end{pmatrix}$$

The belt corresponds to a path in SO(3)Path: a continuous function $[0, 1] \rightarrow SO(3)$



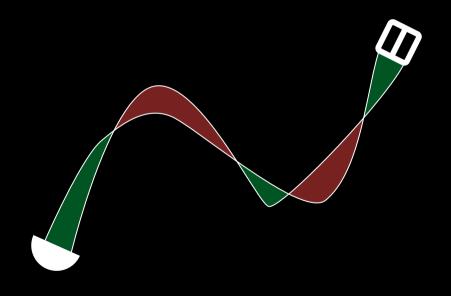
The belt corresponds to a path in SO(3)

Path: a continuous function $[0, 1] \rightarrow SO(3)$ Fixing the ends of belt amounts to fixing the endpoints of the path.



The belt corresponds to a path in SO(3)

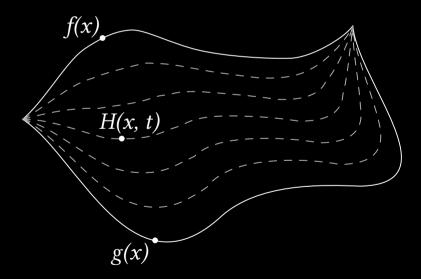
Path: a continuous function $[0, 1] \rightarrow SO(3)$ Fixing the ends of belt amounts to fixing the endpoints of the path. Moving the belt amounts to deforming the path.



Homotopies: deformations formally

Let $f, g: S \to T$ be maps between spaces. They are called *homotopic* if there is a map $H: S \times [0, 1] \to T$ such that for all $x \in S$:

- H(x,0) = f(x)
- H(x,1) = g(x)

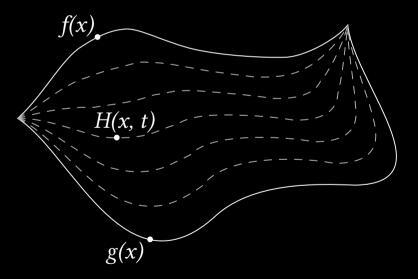


Homotopies: deformations formally

Let $f, g: S \to T$ be maps between spaces. They are called *homotopic* if there is a map $H: S \times [0, 1] \to T$ such that for all $x \in S$:

- H(x, 0) = f(x)
- H(x,1) = g(x)

H is called *homotopy*.



Homotopy: an example

Identity on \mathbb{R}^n is homotopic to a constant map to origin via the map H(x,t) = tx

A map $f: S \to T$ is called a *homotopy equivalence* if there is $g: T \to S$ such that both composites fg and gf are **homotopic to** identity.

A map $f: S \to T$ is called a *homotopy equivalence* if there is $g: T \to S$ such that both composites fg and gf are **homotopic to** identity.

Each homeomorphism is a homotopy equivalence (but not vice versa!)

A map $f: S \to T$ is called a *homotopy equivalence* if there is $g: T \to S$ such that both composites fg and gf are **homotopic to** identity.

Each homeomorphism is a homotopy equivalence (but not vice versa!)

Example: \mathbb{R}^n is homotopy equivalent to a point. Such a space will be called *contractible*.

A map $f: S \to T$ is called a *homotopy equivalence* if there is $g: T \to S$ such that both composites fg and gf are **homotopic to** identity.

Each homeomorphism is a homotopy equivalence (but not vice versa!)

Example: \mathbb{R}^n is homotopy equivalent to a point. Such a space will be called *contractible*.

Example: Circle is homotopy equivalent to annulus.

Loop space

 $\text{Let} \ast \in S. \text{ Define } \Omega(S, \ast) = \{ \rho : [0, 1] \rightarrow S \mid \rho(0) = \rho(1) = \ast \}.$

This is a set of all loops in S beginning and ending in *.

Product of loops

$$\Omega(S,*) = \{\rho: [0,1] \to S ~|~ \rho(0) = \rho(1) = *\}$$

For $\rho, \tau \in \Omega(S, *)$, define their product $\rho \tau : [0, 1] \to S$ by:

•
$$\rho\tau(t) = \rho(2t)$$
 for $t \in \left[0, \frac{1}{2}\right]$

•
$$\rho\tau(t) = \tau\left(2\left(t - \frac{1}{2}\right)\right)$$
 for $t \in \left[\frac{1}{2}, 1\right]$

We just go around the first loop and then around the second one.

The group axioms in $\Omega(S, *)$ hold only up to homotopy (constant at the point *)

- $(\rho\sigma)\tau\sim\rho(\sigma\tau)$
- $e\rho \sim \rho \sim \rho e$
- $\rho\rho^{-1} \sim e \sim \rho^{-1}\rho$

where

$$\begin{array}{l} e(t)=*\\ \rho^{-1}(t)=\rho(1-t) \end{array}$$

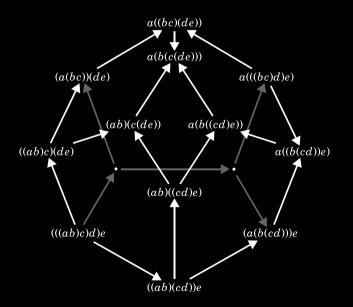
Solution: factor $\Omega(S,*)$ by homotopies constant at *. $\pi_1(S,*) = \Omega(S,*)/\sim$

It is called the *fundamental group* of S at *.

Aside: what if we remembered all the homotopies?

Aside: what if we remembered all the homotopies?

There are shapes called associahedra tracking the higher homotopies. The corresponding algebraic object is called A_{∞} algebra.



 $\pi_1(S, *)$ for S contractible and any $* \in S$ is the trivial group 1. Every loop can be contracted to identity (so it's homotopic to it). $\pi_1(S, *)$ for S contractible and any $* \in S$ is the trivial group 1. Every loop can be contracted to identity (so it's homotopic to it). E.g. $\pi_1(\mathbb{R}^n, 0) = 1$.

A space S is called *path connected* if there is a path between any two of its points.

For all $a, b \in S$, there is $\varphi : [0, 1] \to S$ with $\varphi(0) = a$ and $\varphi(1) = b$.

Proposition: For S path connected and $a, b \in S$, $\pi_1(S, a)$ is isomorphic to $\pi_1(S, b)$.

Proposition: For S path connected and $a, b \in S$, $\pi_1(S, a)$ is isomorphic to $\pi_1(S, b)$.

Let φ be a path between a and b. The isomorphism is given by $\rho \mapsto \varphi \rho \varphi^1$.

Fundamental group of a path connected ${\cal S}$

In light of the previous proposition, we will denote by $\pi_1(S)$ the group $\pi_1(S, *)$ for any $* \in S$.

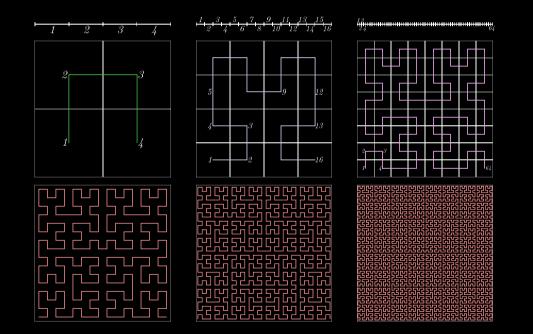
$\pi_1(\mathbb{S}^n)$ is trivial for $n\geq 2$

$\pi_1(\mathbb{S}^n)$ is trivial for $n\geq 2$

- For a loop ρ , find $x \in \mathbb{S}^2$ not in the image of ρ .
- Project stereographically from x to \mathbb{R}^n .
- Contract in \mathbb{R}^n .

The previous argument is NOT always correct

We need to carefully deform a curve ρ that fills the whole sphere to a one that doesn't in order to find the x not in the image of ρ .



Group homomorphisms

Let *G* be a group with multiplication * and *H* a group with multiplication \odot . A function $f: G \to H$ is called a *homomorphism* if it preserves the group stucutre, i.e. for $g, h \in G$:

 $f(g*h) = f(g) \odot f(h)$

Group homomorphisms

Let *G* be a group with multiplication * and *H* a group with multiplication \odot .

A function $f: G \to H$ is called a *homomorphism* if it preserves the group stucutre, i.e. for $g, h \in G$:

$$f(g \ast h) = f(g) \odot f(h)$$

Don't confuse them with hom*e*omorphisms! It's a standard terminology :/

π_1 is a functor = respects maps

For $* \in S$ and $f : S \to T$, there is an induced homomorphism

$$\pi_1(f):\pi_1(S,*)\to\pi_1(T,f(*))$$

mapping the class of a loop $\rho: [0,1] \to S$ to the class of a loop $f \circ \rho: [0,1] \to T$.

π_1 is a functor = respects maps + their compositions

For $* \in S$ and $f : S \to T$, there is an induced homomorphism

$$\pi_1(f):\pi_1(S,*)\to\pi_1(T,f(*))$$

mapping the class of a loop $\rho: [0,1] \to S$ to the class of a loop $f \circ \rho: [0,1] \to T$.

It respects the composition of maps, so for $f:S\to T$ and $g:T\to U,$ $\pi_1(g\circ f)=\pi_1(g)\circ\pi_1(f).$

π_1 is a functor = respects maps + their compositions

For $* \in S$ and $f : S \to T$, there is an induced homomorphism

$$\pi_1(f):\pi_1(S,*)\to\pi_1(T,f(*))$$

mapping the class of a loop $\rho: [0,1] \to S$ to the class of a loop $f \circ \rho: [0,1] \to T$.

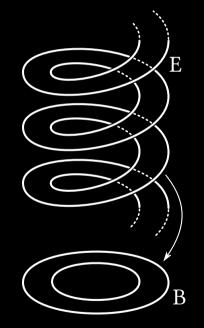
It respects the composition of maps, so for $f:S\to T$ and $g:T\to U,$ $\pi_1(g\circ f)=\pi_1(g)\circ\pi_1(f).$

This means we can think of π_1 as a "portal" from spaces to groups.

How to compute the fundamental group?

Covering of the circle by the real line

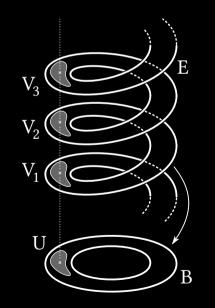
Consider the map $p : \mathbb{R}^1 \to \mathbb{S}^1$ given by $p(t) = (\cos 2\pi t, \sin 2\pi t)$.



Coverings

A map $p: E \to B$ is called a *covering* if the following is satisfied:

- each $b \in B$ has a neighbourhood U such that $p^{-1}(U)$ is a disjoint union of spaces homeomorphic to U



Neighbourhoods formally

For a metric space M with the distance d and $x \in M$, let the open ball around x of radius r be $B(x,r) = \{y \in M : d(x,y) < r\}.$

A set $O \subset M$ is a neighbourhood of $x \in O$ if it contains some open ball around x.

Covering of the circle by the real line

The map $p: \mathbb{R}^1 \to \mathbb{S}^1$ given by $p(t) = (\cos 2\pi t, \sin 2\pi t)$ is a covering:

For each $t \in \mathbb{R}^1$, there is an open interval $(t - \varepsilon, t + \varepsilon)$ where sin and cos are invertible.

Its preimage is a disjoint union of such intervals.

Paths in $B\ {\rm can}\ {\rm be}\ {\rm uniquely}\ {\rm lifted}\ {\rm to}\ E$

Proposition: For a covering $E \rightarrow B$ along with:

- $b \in B$
- a path φ in B with $\varphi(0) = b$
- $e \in E$ with p(e) = b,

there is a unique path $\tilde{\varphi}$ in E with $\tilde{\varphi}(0) = e$ and $p(\tilde{\varphi}) = \varphi$.

The proof uses Heine-Borel theorem.

Homotopies in B can be uniquely lifted to E

Proposition: For a covering $E \rightarrow B$ along with:

- $b \in B$
- paths φ , ψ in B with $\varphi(0) = b = \psi(0)$
- $e \in E$ with p(e) = b,
- homotopy H between φ and ψ

there is a unique lift \tilde{H} as a homotopy between $\tilde{\varphi}$ and $\tilde{\psi}$.

The proof is completely analogous to the previous.

Fibers in coverings

For a covering $p: E \to B$ and $b \in B$, the preimage $p^{-1}(b)$ is a discrete set of points.

It is called the *fiber* of *b*.

For a covering $p: E \to B$, a map $f: E \to E$ is called a *deck transformation* if it respects the covering, i.e. pf = p.

Deck transformations of a covering form a group called G(E).

A covering $p: E \to B$ is called *universal* if E is path connected and $\pi_1(E)$ is trivial.

Proposition: For a universal covering $E \to B$ and $b \in B$, the deck transformations correspond to the points of the fiber $p^{-1}(b)$.

Proposition: For a universal covering $E \to B$ and $b \in B$, the deck transformations correspond to the points of the fiber $p^{-1}(b)$.

Let $e_0 \in E$ and pick its image $f(e_0)$. For $e \in E$, pick a path φ from e_0 to e. There is a unique lift $\hat{\varphi}$ of $p\varphi$ starting at $f(e_0)$. Define $f(e) = \hat{\varphi}(1)$. Check that this is well defined.

What is a group equivalence?

A homomorphism $f: G \to H$ is called an *isomorphism* if it has a twosided homomorphism inverse, i.e. there is a homomorphism $g: H \to G$ such that both composites fg and gf are identity. Then S and T are called isomorphic (just a fancy word for group-like equivalent). **Theorem:** For a *universal* path connected covering $p: E \to B$, $\pi_1(B)$ is isomorphic to the group of deck transformations G(E). **Theorem:** For a *universal* path connected covering $p : E \to B$, $\pi_1(B)$ is isomorphic to the group of deck transformations G(E). Pick $b \in B$ and $e \in p^{-1}(b)$.

 $[\varphi]\mapsto d_{\tilde{\varphi}(e)}$ (the deck transformation mapping e to $\tilde{\varphi}(e))$

 $d\mapsto p\circ\rho_d$ for a path ρ_d connecting e and d_e

Check that these are mutually inverse homomorphisms.

Application: the fundamental group of \mathbb{S}^1

We have a covering $p : \mathbb{R}^1 \to \mathbb{S}^1$, $p(t) = (\cos 2\pi t, \sin 2\pi t)$. What is the group of deck transformations?

Application: the fundamental group of \mathbb{S}^1

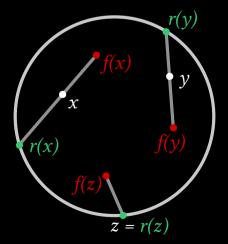
We have a covering $p : \mathbb{R}^1 \to \mathbb{S}^1$, $p(t) = (\cos 2\pi t, \sin 2\pi t)$. What is the group of deck transformations?

 $p^{-1}((1,0)) = \mathbb{Z}.$ The deck transformations are translations mapping \mathbb{Z} to \mathbb{Z} . This group is isomorphic to \mathbb{Z} with addition.

Supporse there is a continuous map $\mathbb{D}^2 \to \mathbb{D}^2$ without fixed point.

Follow rays from f(x) to x until they intersect the boundary circle \mathbb{S}^1 .

This gives a continuous map $r : \mathbb{D}^2 \to \mathbb{S}^1$ which is an identity on \mathbb{S}^1 .



There is also the inclusion $i : \mathbb{S}^1 \to \mathbb{D}^2$ and the composite $ri : \mathbb{S}^1 \to \mathbb{D}^2 \to \mathbb{S}^1$ is identity.

There is also the inclusion $i : \mathbb{S}^1 \to \mathbb{D}^2$ and the composite $ri : \mathbb{S}^1 \to \mathbb{D}^2 \to \mathbb{S}^1$ is identity.

Apply the fundamental group to this sequence: $\pi_1(\mathbb{S}^1) \to \pi_1(\mathbb{D}^2) \to \pi_1(\mathbb{S}^1)$ must be identity.

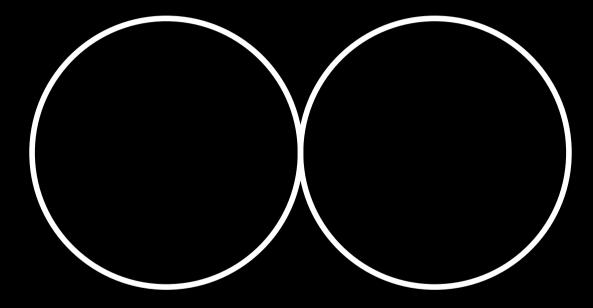
There is also the inclusion $i : \mathbb{S}^1 \to \mathbb{D}^2$ and the composite $ri : \mathbb{S}^1 \to \mathbb{D}^2 \to \mathbb{S}^1$ is identity.

Apply the fundamental group to this sequence: $\pi_1(\mathbb{S}^1) \to \pi_1(\mathbb{D}^2) \to \pi_1(\mathbb{S}^1)$ must be identity.

But this means we must have homomorphisms $\mathbb{Z} \to 1 \to \mathbb{Z}$

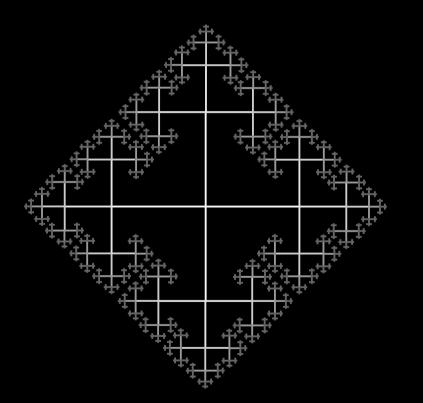
whose composite is identity. A contradiction!

Application: wedge of 2 circles



Wedge of 2 circles: covering

An infinite tree.



Free group with 2 generators

- Elements: strings of letters a, b, a^{-1}, b^{-1}
- Group operation: concatenation of words
- Neutral element: empty word
- Substrings aa^{-1} , $b^{-1}b$ and so on get erased

Free group with 2 generators

- Elements: strings of letters a, b, a^{-1}, b^{-1}
- Group operation: concatenation of words
- Neutral element: empty word
- Substrings aa^{-1} , $b^{-1}b$ and so on get erased

It's the fundamental group of the wedge of 2 circles.

Analogously, the fundamental group of the wedge of n circles is the free group with n generators.

What is the fundamental group of a connected graph?

Theorem: Let *B* be a space for which there exists an universal covering. Then there is a correspondence: coverings of *B* \leftrightarrow subgroups of $\pi_1(B)$

Nielsen-Schreier theorem: Every subgroup of a free group is free.

Nielsen-Schreier theorem: Every subgroup of a free group is free.

Proof: A covering of a wedge of circles is a graph.

Rotations can be represented by quaternions. Nice explanation how it works at https://marctenbosch.com/quaternions Each rotation is represented by two quaternions: q, -q. Rotations can be represented by quaternions.

Nice explanation how it works at https://marctenbosch.com/quaternions Each rotation is represented by two quaternions: q, -q.

This shows that \mathbb{S}^3 (the space of unit quaternions) is a double cover of SO(3).

Rotations can be represented by quaternions.

Nice explanation how it works at https://marctenbosch.com/quaternions Each rotation is represented by two quaternions: q, -q.

This shows that \mathbb{S}^3 (the space of unit quaternions) is a double cover of SO(3). So the fundamental group of SO(3) must be \mathbb{Z}_2 .

Higher homotopy groups (of a space S at $* \in S$)

$$\begin{split} \Omega^n(S,*) &= \{ \text{ maps } [0,1]^n \to S \text{ with the boundary mapped to } * \} \\ \pi_n(S,*) &= \Omega^n(S,*)/\sim \text{(factored by homotopies)} \end{split}$$

Group structure on $\pi_2(S,*)$

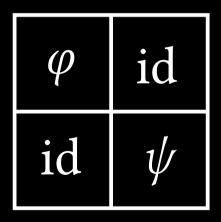
We can define horizontal and vertical composition.



Group structure on $\pi_2(S,*)$

We can define horizontal and vertical composition.

These coincide and it shows the composition is commutative.



Group structure on $\pi_2(S,*)$

We can define horizontal and vertical composition.

These coincide and it shows the composition is commutative.

The same holds for $\pi_n(S, *)$, n > 2.

Theorem: A covering $p: E \to B$ provides an isomorphism $\pi_n(p): \pi_n(E) \to \pi_n(B)$ for all $n \ge 2$.

Theorem: A covering $p: E \to B$ provides an isomorphism $\pi_n(p): \pi_n(E) \to \pi_n(B)$ for all $n \ge 2$.

Thanks to this, $\pi_n(\mathbb{S}^1)$ is trivial for $n \geq 2$.

Homotopy groups of spheres: facts

- $\pi_i(\mathbb{S}^n)$ is trivial for i < n
- $\bullet \ \pi_n(\mathbb{S}^n) = \mathbb{Z}$
- •
- •

Homotopy groups of spheres: facts

- $\pi_i(\mathbb{S}^n)$ is trivial for i < n
- $\pi_n(\mathbb{S}^n) = \mathbb{Z}$

 \bullet

• $\pi_i(\mathbb{S}^n)$ is finite for i > n, except for $\pi_{4k-1}(\mathbb{S}^{2k+1})$ (Serre)

Homotopy groups of spheres: facts

- $\pi_i(\mathbb{S}^n)$ is trivial for i < n
- $\bullet \ \pi_n(\mathbb{S}^n) = \mathbb{Z}$
- $\pi_i(\mathbb{S}^n)$ is finite for i > n, except for $\pi_{4k-1}(\mathbb{S}^{2k+1})$ (Serre)
- $\pi_i(\mathbb{S}^n)$ is isomorphic to $\pi_{i+1}(\mathbb{S}^{n+1})$ for i < 2n-1(Freudenthal suspension theorem)

In general, the patterns of higher homotopy groups of spheres remain shrouded in mystery.